
4. STUDY OF THE KINETICS UNDER NON-ISOTHERMAL 
CONDITIONS 

4. I Fundamental problems 

4.1-i Principles of kinetic data et-aiuation 
The description of kinet’cs presents the prob!em of fInding the dependence of 

the reaction rate on the parameters which define a given system. As far as heterogene- 

ous processes involving solids are concerned, there are a large number of parameters 

to be considered’ ; they are temperature, pressure. composition of the system, the 
size and distribution of particles, etc. In most cases, the effect of the individual factors 
is studied separately- 

When studying heterogeneous processes, there arises a difficulty due to the fact 

that the process may not be monotonous, i.e., no single process can be taken as the 
rate controlling process in the entire region of investigation. In most cases, during the 
initial reaction step, the rate is determined by the nuclekrion of a new phase; during 
the later stages, it is determined by the growth. The velocity, however, is contro!!ed 

either by the phase-boundary reaction or by transport of reacting species. In these 
cases, the kinetic anaiysis is directed to arrange the experimenta! conditions in such a 
wav as to make possible the investigation of kinetics of a sing!e partial process. 

If the required experimental conditions are met, satisfactori!?;, then the rate of 
the process, I can be described by the two functions 

r = 2 = k(T) f(r) (4-I) 

where the first function k(7), is only temperature dependent, while the second one, 
f(z), is a function of the instantaneous phase composition of the system in question 
provided that the composition can be represented by the conversional transformation, 
x. It is the task of empirical kinetics to find the analytical form of both functions; 
that is, to determine the so-called kinetic parameters. Provided that all other possible 

variables are held constant, the thermodynamic process or simply process, is deter- 
mined by the two quantities, 2 and T, as a function of time [z = 5(t), T= T(tj]_ Their 
time profile is investigated experimenta!Iy. 

The most common esperimental method is based on the investigation of the 
isothermal course of the process, that is, on an experimentally determined dependence 

of z = Z(t) at T= const. for a set of temperatures. Upon integration, eqn. (4.1) yields 

-= dx J - = g(=)=k(T)r. 
0 f(z) 

(4.2) 

The linear dependence of g(z) on t makes it possible to find by way of triaI and error 
the function which best corresponds to the experimental data, z = 5:(r)_ When defining 
the form of the thermal dependence of k(T), the Arrhenius rc:&ion, Z exp (- E/Rr), 
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is usualIy the most convenient and the constants, 2 and E, are determined by graphical 

plotting Iog k(T) azziinst reciprocal temperaklre, (I!T)_ 
The realisation of an isothermal measurement is based on the assumption that 

the initial nonequiiibrium state of the system (the required onset of the process 
investigated) is obtained before the investigated process can advance to a measurable 
degree of transformation (the actual onset of the process)_ With heterorencous 
systems, this requirement presents a number of experimental dificulties. -4s a result 
of fast heating, which is necessary in order to reacn the desired working temperature, 

there arises a variable temperature gradient in the s.zmpIe (a non-uniform distribution 

of temperature) so that the process becomes non-isothermal anti thermally uncon- 
troIabIe. This is particularly true for heterogeneous pr- YCMS which arcs brought to a 
temperature which is far from the equiiibrium tcrilperature. 

These obstacfes can be avoided by usirg _ Tlon-isothermal methods of investiga- 
tion where the time dependence of tempczture is intentionally prosrammed, fre- 
quentIy in a linear manner. NatcraIly, ths temperature gradient still exists but it has a 

uniform character_ 
Upon the integration pi eqn. (4_1), the foIlowin_g relation is obtained 

a-x dz 

I - -2 g(z) = J ‘* “(T)dT - 

. 0 f(cj 

P-L- 

I AS ssiution can be rewritten in the zenera form 

z= Ji(t,+). 

After aIgebraic manipulation 

(4.3) 

(4.4) 

(4-5) 

and because d#;‘dT= 0 (4 = constant), then 

_= E =Sxdt=CzxI_ dz 

dT ( > aT 0 dt dT dt q5 
(4-e) 

The same approach may be used for any type of heating (quadratic, hyperbolic, etc.). 
The same course can be adopted for the class of isothermal processes expressed 

by eqn. (4.2), the solution of which may also be written in explicit form 

Dz = iqt, l-) . 

It is formally valid that 

(4.7) 

(4.8) 

as under an isothermal measurement the temperature is constant, and thus, dT/dt = 0. 
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The rate of a process being defined by eqn. (4.1) or 

(4.9) 

Recently the work of ~MacCaJJum and Tanner’ has initiated rather extensive dis- 
cussions3-lo concerning the correctness of the mathematical treatment of data 

obtained under non-isothermal measurements. The equation 

(4.10) 

became the center of discussion; the question was how to interpret the individuai 
tota and partia1 rate terms. It should be noted thar this equation resulted from the 
derivation of a general equation, r = B(T, t), and it is necessary to investigate its 
origin_ It can be understood in two different ways: 

Q) As a function describing the given process in the system that obeys eqn. (4. I). 

which may be rewritten in the genera1 form i = F(z, T). Hence. for a given tempcr- 
ature-on-time dependence, the function:, 5, represents the solution of the differential 
equation (4.1). This solution is dependent on the manner of temperature program- 

ming. Thus, for a constant heating rate, 4, the solution is r = Z(i, 4) (see eqn. 4.4). 
The expression is easily rearranged as foIJows: z = 5(t, 7-/r) G S(t, T). This clearly 
demonstrates the difference between the functions denoted Z and 2. as we11 as between 

the meaning of their partial derivatives. TJGs is also discussed in detail by Sest6k and 
Kratochvil ’ ‘_ 

b) As a true constitutive equation, where the function dependence i is vaiid 
invariably for any admissibIe process given by [r = L?(f); T= T(r)]_ which the con- 
sidered system undergoes. However, such a description would physically correspond 
to a material controlled by an interr,aI clock, such as ;i material undergoing a spon- 
taneous ageing. This, naturaIJy, does not seem to be the case for an ordinary chemical 
reaction as treated by standard methods of chemicaf kinetics. 

The above is worth mentioning as it indicates the importance of properly 
defining the limits of different approaches. It shows the difference between the consti- 
tutive equation established on one hand by long experience and/or of a suitable theory, 
and the admissible processes measured experimentaIIy. The best framework for such 

considerations, however, uses the concept of rationa thermodynamics’ I_ 

4.12 771.~ itztegration of the kketic eqrrarim under nom-i.rotJrernmJ conditions 

Beside a knowIedge of the proper form ’ * lo of the functions k(T) and f(r), the 

integraticn of eqn. (4-I) requires also the analq-tical expression for temperature 
programming. For a non-isothermal system’, the reIationship between the tempera- 
ture. T, and time, t, is given by 

dTfdt = #l- (4.11) 
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where dT/dr is the heating rate and Q and m are constants. Hence, 

= g(z) = [I s dT = P(T) 
c 0 

(4.12) 

where the functions, g(z) and P( Tj, depend only on the fractional conversion, I, and 

the temperature J-, respectively. The integration Iimits are chosen in accordance with 

the beginning of the process. A choice of To based on the view that the start of the 

heating is identica1 with the commencement of the kinetic investigation is misleading, 
since it can even result in the arbitrary choice of To equal to absolute zero. The process 
of integration of eqn. (4_ 12) is carried out on two different levels. Establishment of the 
function, P(7), is mathematically complicated but is based on the known form of the 

k( 7) function given as the Arrhenius exponential-type equation’_ The problem of the 

intebmtion of the Ieft hand side of eqn. (4.12) is quite different because the function 
f(r) is usually not kncwn. 

4_1.2.1. p(s) function (integration of the Ardrenirrs equation at rising temperature). 

Concerning the integration procedure, the simplest method would be to employ the 
linear variation of the reciprocal absolute temperature’ ‘-I ’ 

'T 

I - = 
. TO 

= zE[-$$)] (4. I 3) 

where Z and Eare the kinetic parameters to be determined (the pre-exponential factor 

and the activation ener_gy respectively). Such experimental conditions are not currently 
avaiIabIe, although this idea is worthy of consideration” with the advent of sophisti- 

cated furnace temperature controhers. UnfortunateIy, from the viewpoint of the 
present mathematics, the most common experimental approach used thus far requires 

a constant heating rate, 4_ It yie!ds the Iinear temperature proportionaIity with time 

T= T,+.+t and/or d7;fdt = Q (4.14) 

As aiready noted, the temperature, To. is the Iower integration limit from which the 
temperature increase hoids a real meaning with regard to the investigated process. 

Values of the exponentiaI-integral, Ei(-_r). or of a related integral cakd the 

p(_rj iuncrion Is, are essential to the analyses of these thermal processes. In order to 

find a suitable analytical formulation, it is convenient to introduce a new variabIe, 
u = E!RT. Hencz, combining eqns. (4.12) and (4.14) 

1 es exp(--u) 

2x0 uz J 

du = ,exp~-z’) _ j: expl-_uj dul (4.15) 
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Because Zi ( -x) is defined as -$’ exp (- U) duju. WC may write 

I 
.*= exp C--u) du = exp (-x) 

- E,(-x) = p(x) 
l = u= x 

(4.15) 

where the new function, p(x), has been introduced on the basis of work by Akahira’ 6, 
Doyle”, Satava’ ’ and Vallet “. Atthough eqn. (4.16) cannot be expressed in a closed 
form, there exist several series for its approximation*_ They are: 

(I) For x> 16, through integration by parts 

p(x) = 
-PC--xx) 

X2 [ 

l_Z, 3! -_ 
X x2 

___ 
+ (- l)“(n + l)! 

Xn 1 (4.17) 

(2) For x> 15, according to SchIGmiIchz3 

p(x) =exp(-x) 
1 

1 _ l + 1 (-l)*An 

x(x+ 1) x+2 (x+2) (x+3) --- + (xi-2) . ..(xfn) 1 (4.18) 

where An is a specific constant I’. 

(3) For x> 10, according to Tayior’s formula: 

P(x) = 
exp ( -x) 

x 

(4) For 9txt 174 

1 o-577+ 1 ?rx4-x + x 2x2! .-- + (- nxn! 1)“X” 1 (4.19) 

p(x) = 
exp (-x) 674.567f57.412x-66.055x-‘--x3 

> 
(4.20) 

X 1699.066i841.655x+49.313x2-88.02x3-x4 

(5) For 20tst60, according to Doylez4 

log p(x) = - 2.3 I 5 i 0.4567x_ (4.21) 

AIthough asymptotic series are divergent, a limited number of terms of the 
series can be used to calculate a value for the p(x) function to an accuracy which 

depends on x and the number of terms chosen. This was first discussed by Akahirar6, 
DoyleZ5, and later, in more detail, by Biegcn and Czandcra26 and Gyulai and 
Greenhow’“b. 

*if the pre-exponential factor. 2. is assumed to be iinearly dependent on temperature, Z = Z’ T. 
thenz2 

g(z) = - 
Z’E=p’(x) 

2 g5Rz 

=-here p’(x) - ==Px(l) _ -3-5 x 10-6 _ o.w;029 + 1-9;2i65 ___ 

A table of log p’(x) functions was composed to investigate the effect of temperature dependence by 
Valkt2= who also derived expressions for 2 = Z’ 7-l” and corresponding formula for 2’(x) function 
calcu!ations. 
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The tabulations of the Ei(-_r) function are given by the folIowing investigators: 

Xkshira * 6 [_r = 

Harris” 1-x = 

MiIIer and Hurst” [_r = 

Glaischer and Cayh~y’~ fx = 

Jahnke and Embde3’ [_v = 

Abramowitz and SteSun3’ [s = 

USSR tabIesZ 1 [x = 

and many other tabIes3’-35_ 

ZO(O.0 I )5OJ 

Ii 1)4(0_4)S( 1)50] 

O.Z~~_ZS;S; 3. I) :0(0.2)20(0.5)50( I)SO] 

0.01(0.01)5(0.1)15] 

0_01(0.01)1(0.1)1~ 

0.5(0.01)2(0.1)7] and 

0.0001(0.0001)1.3(0.001)3(0.005)10(0.1)15] 

The function p(_xj was caIcuIatsd by: 

Doyle” [_r = IO( I)501 
OberIBnderj6 [E = 0.2(0.2)0.2 T = 25(25)1000; I50(10)330] 

ZSdG03 7 [E = 10(2)66, T = X3(10)600] 

Biegen and Czandera’ 6 [_. = 15c0.1)50] 
and others such as VaIIet”, Smith and AranolT3’, Redhead”‘. %ta~a and 

SkvPraJO, and FIynn and 1ValI ’ 9; computer programs are also availabIe’6-Jo-‘0”. 

Because there is insufficient ranse and detail in the value of _K to permit analysis 

of thermal processes in a wide region of x-s, the tabIes of p(x) function in the region, 

E = 7(3jI45, T= X3(10)1 773 are given in Appendix 1. A Testa computer and Fortran 

Iansuage501 were used to sum the series in eqn. (4.20) with a reported error of Iess than 

lo- ;_ 

Integrating eqn. (4_ 12) for the ase of a constant heating rate, 4. the expression 

is obtained 

(4.22) 

where Z, E, R and & are the temperature-independent constants and Tcq is the cqui- 

Iibrium temperature for the process. For 7-s Tcg, the second term in the square 

brackets is negligible with respect to the preceding term and eqn. (4.22) is simplified 

to DoyIe’s equation” 

(3.23 j 

Other cases of non-linear heatins have been developed for the study of the aseing of 

insulating materials’ s- I ‘*_ 

*rX grncrrtl USC of non-progr~mmcd temperruurr variation is exponential-like. T= Tr,,-CT,i,- To) 

esp (- qr). where To and TrlD are the starting (0) and final (fin) temperatures_ This course of cempera- 
lure is often met in the first period of isothermal experiments” or in the investigation of electrical 

insulat~rs’~-‘“. Hence, the heating rate between the start of heating, To. and the onset of the final 
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4.122. Enzpiricai kinerics (choice and integration of simplified model relalions). If 

only a formal description of the process is the aim of the investigations then it is 

satisfactory to fuIfi1 the mathematical requirement of eqn_ (-I_ 12) by a simple function 

f(z)‘, in the most simple form I ‘, 

f(z)=(l--Y) (4.24) 

where n is the exponential factor, sometimes called the reaction order, in analogy with 

homogeneous kinetics_ This factor has a purely empirical significance and is by no 

means a universal constant for heterogeneous reactions * -‘O. in contrast to homogene- 

ous-like kinetics, fractional or even negative reaction orders. II, are often observed. 

However. this concept has proven useful as a means of cIassifying a Iimited number 

of solid state reactions (phase-boundary controIIed processes where n = 0, 1,‘2, I,!3 

and I j and so may serve as preliminav information to the reaction kinetics’_ Further- 

more. it is found suitabfe for obtaining a measure of the change in the kinetic processes 

when comparin g a series of experiments conducted under different conditions which 

is usuaIIy the case with engineering investigations_ 

The above form of the function, f(r), cannot describe the kinetics of diffusion 

or nucleation and or nuclei growth. The latter can be fitted by the Johanson-IMehI- 

Xviami-Yerofeyev-KogIomorov equation~‘z 

s(x) = -In(l -x) = ktr (4.25) 

The function, f(r), can be derived from eqn. (4.25), or 

f(~)=(I-~j(-ln(I-~)jP=X-*f (4.26) 

where k* = rk(*;‘) and p = ! - ( 1: r). ; This equation contains the polynomial cjlaracter 

of the expression. Upon expansion, eqn. (4.36) may be transformed into the iormG’-sG 

(I-~)(-In(I-~))P~(ao+a~~f~,~Z+...)(boclPibI~pi1+hl~P’2f__~) 

(4-27) 

and fmaIIy rearranged as 

=~o”P+C#+QfC2%P-~f ___ 2 =“(I -2)” (4.X) 

where a, b and c are constants and the values or the exponent-factors p 2nd II are 

given in Fig. 4. I. These two-exponent type equations (4.27) and (4.25) demonstrate 

we11 the similarity of different kinds of matf_ematicaI description and rhe unnecessary 

use of any more complicated (e.g.. three-exponent) expressions-J. They represent a 

more generaIized form of eqn_ (4.24) by adding the function P_ 

required tcmpcrature. Tn,. is given by d In T,‘df = y = const. (m in eqn. (4.1 I ) is equal to onej. The 
integration of the rate equation, after the substitution for the function variable. gixxs 

E 
cI= 

T,,-((7;,,- 7-o) 

An exponential integral in the form 
E*(--xl-cxp (-x~*~E,~x,,,-s) 

for x = EjRT and xCl, = EjRT& is then obtained. 
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Fig. 4.1. Piot for detcrminstion of exponent factors n and m from known value of r- 

This generalization can also be made by introducing a function of time f + (I), as 
a multiple to the simple function, f(z), in eqn. (4.24). It was found empiricahy that an 
equation of the following form is mathematicahy suitable to describe a variety of 
reactionsG5 

dz 

dt 
= k’r’-‘(I-# = k’f(x)f+(l) (4.29) 

It shouid be noted however. that X-’ is not a true rate constant because it is 
defined inconsistentIy by an equation involvin, w both variabIes z and t. Therefore, 
such an expression is not capabfe of _vieIding comparable 
unless eqn_ (4.29) is mathematically transformed into 
vsriabie, x or t. It may by accomplished, for esrtmple, 
impingement factor. (I --I), from eqn. (4.29) to give*’ 

dr’dt z f _ * and therefore r = tr.!r 

v~Iues of kinetic parameters 

the dependence on either 
by dropping the so-called 

hence, 

(4.30) 

‘(4.3 1) 

It is plausibte that eqn. (4.28) aIso appIies to the case described by eqn. (4.29) by re- 
introducing (I -2)” into eqn. (3_30)_ 

The foliowing alternativve rate equationJ6 is of more general utility 

dz 
- = kz”(I -zjx)“(-In(i -(x)1” 
dr 

(4.32) 



455 

where M, n and p are empirically obtained exponent factors, one of them being always 

zero 43.44.46 

In some cases it is more favorable to express the function f(r) in the form of a 
poIynomiaI with a suitabIe number of terms, as given by eqns. (4.27) and (4X3), and 
to determine the individual constants (c’s: ‘?:; ti:_::~g the experiment.:! data. This is 

useful when a numerical derivation is needed” and/or in polymer chcnristry’ 9 to 
describe various types of depoIymerizations, e.g., 6(zli2 --I); 

60 7r’i2 ! 

-- z3fZ+r 
- - -_ 

31 4 > 4 

and/or 

24 7rw 1 

-- 13 ( g+$-----. > 4 4 

A more esact approachl which enabies the determination of the most probable 

rate-controliing processes, is based on fitting experimental data with a known model 
relation, s(r) (ref. 47) (see Chapter 3). The most suitable function, S(Z), is found by a 

trial and error method from a set of case-modeIs corresponding to the appropriate 
reaction mechanisms’-j”-j”. This is perhaps the best method fcr obtaining the 
reaction path because such data pril;Gde the first information to direct the consequent 
experimental study in order to expkin the detailed reaction kinetics and mechanism_ 

For detaik of this approach, see section 42.3. 

d. 1.3. 1@ierwe of kinetic parameters on the shape of non-isothern~ai ctirres 

The shape of non-isothermal curves is aRected by both the model relation, g(y), 

i 

0.6 
i 

f 

Fig. 4.2. Effect of the change of ind%-iduai kinetic psramrtcrs on the shape of the origina! non- 
isothermal curve5’, u-here E=27x IO3 cal moIe_‘, Z= 101os-‘, 6 = 5-18 ‘C:min, f(z) =: (I -pxfz 
(see tent). 



reflecting the reaction mechanism and the kineiic parameters_ E and Z, characterizing 

the temperature dependence of the reaction rate. The term. g(x), reaches the value of 

unity for z approaching cne (or for z = 0.5, c m(z) 2 IO- ‘) and therefore, the right-hand 

side of eqn. (4.23) must also be of this magnitude. The effect of these phenomena on 

the so-called integrai cur;es is graphically demonstrated in Fis. 4.2, assuming a 

simple process propagatin, m far above its equilibrium tern-@rature. The constructions 

of TG cures by D0y1e’~ and Satav.a” ~~1s discussed first by FIynn and Wa11’9. 

SestSk”. OZ~W.;~~~, and Iater by otherszo-“-56. ~IathemcttiwIIy, the changes in eqn. 

(3.23) may be induced by’ ‘: 

(u) the chanse in the multipIying constant. EZ,‘4R, 

(h) the change in the function. p(E:RT). 

(.c) the chan_re of modei relation, s(s). 

Fig. 4.3. Graphical demonstration of the intluence of the individual kinetic parameters on shape zd 
position of TG curves. <\-here E = Z x 10; cd mo!e- 1; Z= 1 x 109; 4 = ! ‘C,fmin_ g(z) = 1 -(I -zj”’ 

if not specified diffcrentll-_ 
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For the first point, maintainin g a constant value for _g(z) (.z I). if 2 is decreased by 
one order of magnitude, then the value of the function, p(E.‘RT), must accordingly 

increase by one order of magnitude to maintain the required balance between the left 
and r-i&t hand sides of eqn. (3.23). This is only possible b_v the shift, E!RT + 

EjR(TiAT). AIternativeIy, the change in E by ten per cent does not geatly affect 
the multiplying constant, EZ; RQ. but it substantially changes the value of the function, 
p(EjRT). This variab1e must be compensated thus: E,‘RT= (E,+AE)/R(T;AT) 

(see Fig_ 4-3). It can be seen that the changes in the kinetic parameters, E and Z, are 
closeiy related and mutual!y supported and may be compared to the correlation 
be:ween tl ?r pre-exponential, entropy-like term, and the esponentiai, energy-barrier 
term. in the original Arrhenius rate constant (see section 3.2). 

In an opposite manner, a similar procedure can be adapted to enumerate the 

effect of operational variables’ * (changes in the measured temperature and heating 

rate) on the value of calculated kinetic parameters_ Since the temperature detected 

experimentally is usually higher than that inside the reacting sampls, higher values of 
the kinetic parameters are to be espected. or, Ts AT G > E+AE and”or TtAT E 
> Z; AZ (accompanied also with a sIight increase of E). Consequently, the deviation 
in the heating rate, 4, by ten per cent influences the multiplication constant only to a 

smaii degree but brings a comparatively Iarger change in the p(x) function and 
increases the curve siope and curvature (see Fig. 4.3). Uncertainties in the measure- 

ment of T and 4, together with a possible error in z, are essential for the accrrraq 

with lvhich the kinetic parameters, E and Z, are determined. On the other hand. the 
appropriate choice of the function g(z), see point (3) <as well as the function k(T) 
in eqn_ (4.1)) determines the c~rrecfne.s~ of the kinetic parameters (i.e., whether these 
kinetic constants are attributed to the true rate-controlling process)_ 

The effect of kinetic parameters on the shape of differential curves was calcu- 

Iated by Jiintgen and van Heek5’ using the equation, 

dV Z 
- - exp 

27-t) 
(4.33) 

where Y is the volume of gaseous product Iiberated in time I and V= is volume of the 
product finally obtained_ After integration of eqn. (-I-33), and introduction of the 

p(x) function, the following set of equations is obtained for the discrete vaIues cf 
reaction order, m, 

n =0, d?/dr=/i (‘4.34) 

13.35) 

(4.36) 

(4.37) 
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where A is a constant_ The diagramatic representation of the above equations is given 
in Fig. 4.4. Similar CaIculations were made for DTA curves6’ first by Reed et al. lJ2 
and recently also correlated with regard to the kind of rate-controliing processes6‘ 
(see section 4.4, Fig_ 4.21)_ 

Fig- 4.3_ Graphical demonstration of the effect of individuzi kinetic parameters on the shape and 
position of eWuent anzd_yses (i-e_. derit-3tik-e) curves, where V, = 20 cm’, E = 5 x IO4 cal mole- I, 
*= 1010 Cm3(5-D’ mine 1. 

4 = 3 ‘C!rnin and f(z) = (I -2)” for n = 1 if not specified differently 
(according to Jiintgen and Van Heekss)_ 

4-Z-4. Experimemal condirims and signifirace of calcrrlaed kinetic data 

The most important problem arising in the study of heterogeneous process 
kinetics is the precise definition of both the initial state of the system and the con- 
ditions under which the experiment is conducted. For exactly determined conditions, 

the path between the initial and the finaI state of the system is given only by the 
propertie? of the material investigated. If the goal of the investigation is a technological 

application of the process studied, then the initial state and experimental conditions 
dupiicate the actual operational conditions. Such a case may be a pilot-pIant type 
reactor so that the Iaboratory determined time course of the process corresponds to 
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that to be expected in an actual pknt process. The main interest is probabIy direc:ed 

to the energy consumption and not to the elucidation of the reaction mechanism. in 
generaI, kinetic studies are usually intended to verify theoretical assumptions about 
the physico-chemical nature of the process and to find a reaction mechanism which 
holds for constant conditions influencing the reaction rate !pressure, temperature: 
concentration, etc.)_ Using TA methods, !hc characteristic eIevation of the temper+ 
ture brings into consideration the problerr. of holding constant experimental condi- 

tions within a certain temperature interval. For transitions in condensed systems, the 
required conditions are readily put into use, as shoivn m Fig. 4Sa. In the case of 

1 I 
!a) T (4’ T 

Fig. 4.5. Graphical representation of conditions of a process accomplishment. 

gaseous products. the simplest method is given in Fi_g_ 4.5b which is also suitable for 
multicomponent systems formins no solid soIutions (decomposition of carbonates, 
meta! salt hydrates, etc.). 

In the case of the formation of solid solutions and/or new chemical compounds 

in multicomponent systems, the relations hecome quite compIicated6’-6’“. The corre- 

sponding non-isothermal fractional conversion, 2, is then composed of two com- 

I T 

Fig. 4.6. Three possible types of processes differing in their temperature dependence for a binary 
systems. 
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ponents. The first component relates to the entire kinetic process and equals the 
normal fraction4 conversion of the corresponding invariant process. z. The second 
component. &_ refkcts the propa,, mqtion of equilibrium (the shift of the fina state) 
with a temperature increase_ The non-isothermal degree of conversion for variant 
processes, 2, and the equilibrium advancement for the ;>rocess. i,, , can be defined by 
the reIaiionship introduced by HoIba and SestAk’. 

i = ;(i,, . (3.35) 

It can be applied to the case of meltin g in binary phase diagrams, (Fig. 4.6) where 
components A and B form a solid solution (s-s). Three typical processes may be 
distinguished. according to Fig. 4.7. The normaIized change of the equilibrium 

Eqziriittim 
5ckncemenf 
fcr fhe process 

- , 
+? I' 

itT/otiUfif rfizrrunf 
=J region -- I,, ’ regrcn __--._ 

T, cl L T, T 
I- 

rnmrknf co.mbhxi *rcmrnf --- 

Fig. 4.3. Diagram&c representation for the course of the degree of conversion on temperature for 
three systems. The full line rcprcsents conditions of an infinitesimally slow heating (equilibrium 
curve), the dashed line represents conditions of a definite heating raw (maI cume). 

advancement. i.,, , quantitativeIy describe each of them using the lever rule’_ It is 
evident that only those processes may be described by the normal kinetic equation 
which have an invariant character (a temperature-invariant final state), or for which 
the variant temperature region is smaI1 and so the onser of the kinetic investigation lies 
at a temperature above this region. In a11 other cases a knowledge of the temperature 
dependence of i.,, is required in order to satisfy the universal non-isothermal kirzetic 
equation, 

d In i,, 
2-4 - 

dT 
= k(T) f(r) (4.39) 

given by HoIba and Sest8k’. TXs expression is valid for the case where f(r) represents 
a process mechanism, which is independent of temperature, and where the Ieft-hand 

side of eqn. (3.39) si,onifies the modified rate of the process, d</dr. In a practica1 sense: 
it is sppiicabfe to the processes of dissociation and oxidation of quenched oxides and 
aJ!oys_ 

In the case of coexistence in time of processes which develop within a wide 
temperature interval, it is clear that a superposition of processes is to be expected. If 
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the conditions of the experiment are precisely defined the corresponding plot of 

i.,, vs. Tcan be realized even for such a combination_ It should be emphasized that 
owing to insufiicirnt choice, definition, and constancy of experimental conditions 
durin_g an experiment, an unwanted superposition of processes may be created. As an 
exampIe, the combined process of evaporation and boiling of water in Fig. 3.7b. The 

plot of i,, vs. T may be of assistance in separatin g simple processes by a suitable 
modification of experimental conditions_ It is important for the physical meaning of 
the kinetic parameters subsequently evaIuated since these relate only to simple pro- 

cesses. 

The determination of the function, g(r) and:or f(r). requires certain assump- 
tions pertaining to the character of the initial system. The experimental set-up of the 
system investigated should comply with the hypothetical-case-model, for example, 
the Jander equation for three dimensiona diffusion (section 3.4-4) is valid only in the 

case when the particles of one reacting component of a pcrvder mixture are at least 
IO-100 times larger than the particles of the second component_ Besides these geo- 
metrical requirements_ the hydrodynamic conditions on the reacting interfaces are of 
great importance (section 3.6.1). The transport of matter andjor ener_g ma>- become 
the rate-controIIing process or at Ieast a part of the slowest process_ By a suitable 
choice of experimental conditions it is possible to investigate the individual regions 
where an elementary process has the most determining character_ Practically, the 

tendency is to exclude the transport processes by means of thin layers of solid sam- 

ples - iI*59 in _eood contact with large heat resen-oirs in order to facilitate the heat 
exchange between the sample and its hoIder and also to minimize seIf-hearing and/or 
self-cooIing phenomena’9*60. 

The mass transport in the surrounding fZuid phase may also seme as an effective 
impedance factor_ High velocities of flowing gases and; or low, well-defined pressures 
are thus desirable. The Iatter method is more convenient in TG experiments because 
of the di!IicuIty in obtainins well-defined conditions of a gas stream aIong the solid 
sample surface. From this \ iewpoint, the recommended method of studying processes 
on phase boundaries is a continuous gas evolution analysis of a fluid-bed sample. 

Another problem is the real phjrsical meaning of the calculated k:netic para- 
meters. Beside the requirement of a known mechanism, the best exampIes of kinetic 
constants comprising individual rate determining processes may be the case of the 
compiex activation ener_e for nucleation and crystal growth (see section 3.4.3 and 
TabIe 3.6). The latter is composed of two thermodynamic work terms associated with 
the formation of new phase stabIe domains and with the accomodation of product 
species in the growing lattice and of the terms ariiins from the kinetic barrier to 
transport_ Relatively hish vatues of such activation energies determined for crystalti- 

zation processes in glasses (about 100 kcaI/mol) may be basically explained by the 

large contribution of the activation energ for diffusionb3. The activation energ of 
glass ionic (d-c.) conductivity determined just below the crystallization re,oion may be 
of assistance in further analysis_ 

In some instances it is of value to compare the results obtained under isothermal 
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and non-isothermal conditions6L66. Although the former techniques involve the 
difficulty connected with the precise determination of onset temperature, in com- 

parison with a non-isothermal method, it provides more information necessary for 
a detailed determination of the reaction mechanism. Assuming a constant function 
g(z). the correlation between these two techniques was made by Doyle2* and later 
improved by SzakoSY who estimated the isothermal data from thermogravimetric 

data. If samples of the same geometry and degree of subdivision are subjected to 
isothermal and non-isothermal TG measurements under otherwise identical experi- 

mental conditions. then identical values of r and g(r) are obtained_ The isothermal 
ageic,o time, fj, and the absolute TG temperature >i, at which the same value of r 

occurs are related by 

Jog tj = log g 
0.434 E E 

+- +rogp- 
s Rho RT, 

(4.4@ 

where Z-‘,, is the absolute ageing temperature_ 
Generally there has been good agreement between the parameters calculated 

by both m&hods *33*65-66*13 * - ’ 3 Is, under comparable experimental conditions_ 
Schneider68*69 has created the interdependence between the obsemed effect of 

the degree of con-;ersion and the heating rate on the apparent activaticn energy of 
pol_ymer thermal dtgradation reactions using TG methods. it was shown that complex 

chain reactions, which occur in non-stationary TG conditions, always display such 

influences. By extrapolation of the obtained apparent activation energies it is possible 
to deduce the activation ener_gy of initiation while the values corresponding to the 

maximum reaction rate Iead to the activation energy for quasi-stationary reaction, 
comparable with that obtained under isothermal reaction conditions. 

4.2. MH~IO& of kinetic data erafuation 

The determination of kinetic parameters and model relations is made from one 
of the rxpEtrimenta1 expressions: i = 2 esp (- E;‘RQ f(z) or g(z) = (ZE;R+) p(E/RT)_ 

The first methods are called differential types while the second are integral_ Such a 
classification is not completely consistent because some of the methods >f el.-Anration 

use combinations of both approaches_ 

4.2-i. Historical dere/opnrent of applied non-isorhermal kinetics 

In spite of a surprisingly extensive literature prior to 1960 on non-isothermal 
methods of kinetic data evaluations, this field was long ignored by chemical kine- 
ticists’ ’ . _4ccorJinglyt the pio leering work in non-isothermal kinetics remained rela- 

tively unknown. The first attention to the neglected literature was given by Flynni’; 

due to the iarge amount of work by man) authors, attention is called to the following 
reviews 17.I9.70.71 
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The use of thermal ana!ysis to measure reaction rates dates to the work of 
Bruylants in 191 I. A major contribution was made by Akahira in 1935 who also was 

the first to publish tables to evahrste the p(x)-like function. Urbach (1930) introduced 
an equation for the maximum of the glow curve derived to evahtate the first order 
kinetics from inflection points. In 193 2, Skramovsky pointed out some advantages of 
non-isotherma methods. Vahet (1935), Sherman (1936) and Brietmann (1937) deait 

with the temperature dependence of the reaction rate by improving the use of the 
p(x)-Iike function. In 1918, Randall-Wilkins and GarIich-Gibbson deveioped a 

theory of gIow curves while Harton used the numerical approximation of p(x)-like 
functions_ Segawa was the first to calculate activation energies from the following 

equation (wherei is an arbitrary point) 

log /ci = log 
(dr,!d7-); 

c 1 f(Z)j 
(4.41) 

In 1951, Van Krevelen, Van Heerden and Hutjens made a comprehensive anaIysis of 
integral methods and published nomograms for kinetic data evaluation. Richter and 
VaIIet (1953) applied non-isothermal kinetics to the CaCO, decomposition, while 
Bohun (1953) was the first to evaluate the activation ener,oy from the variation of the 
maximum temperature with the heating rate. The most extensive development took 

pIace in the next ten years, for exampIe: 1955 (Boersma; iMurray and White; Baur, 
Bridges and Frassei; Gaensslen and Mackenzie); 1957 (Borchardt and Daniels; Berg; 

Frentz; Koftsad; Jongi ; Tsuzuki and Nagasawa) ; I958 (Freeman and Carroll; Dan& 

and Ponec; Smith and Arranof; Hoogenstraaten); 1959 (Barrer and Bratt; Whitman; 
Lumme; Anderson; Kissinger; VaIIet ; Blumberg); 1960 (Murgulescu and Segal ; 
Newkirk); 1961 (DoyIe; Gam; .Markowitz and Boryta; Satava; Jaque, Guichon and 
Gendzel; Wendlcndt); 1962 (Flynn ; Wall; Lukaszewski; Franck and Sizmann; 
Turner, Schnitzer and Hoffmann; Reich; Berlin and Robinson; Kwong-Hwa; Proks; 
Redhead); 1963 (Horowitz and LMetzger; Anderson; Friedman; Sestik; Haber, 
Rosicky and Skramovsky; Lee and Levi); 1964 (Piloyan; Coats and Redfem; Mag- 
nusson; FUOSS, Sayler and Willson; Savin; Rezniczenko; Ingraham and Marier; 

Tratore; Rabovkyi; NikoIayrv; Schneider; Szekely); i965 (Brindley, Achar and 
Sharp; Hughes; Szako, Chaterjee; Jiintgens and Peters; Fatu; Rogers and Smith; 
Lutter and Gerbach; Osawa; Bohon; Reed, Weber and Gottfried: Heide); plus other 
numerous titles in the recent literature. The first comprehensive reviews in non- 
isothermal methods of kinetic data evaluation were published about the same time 
(1966167) by FIynn and Wail (genera1 treatment of the thermogravimetry of polymers), 

SestAk (methods of kinetic data evaluations from isothermal and non-isotherma TG 
curves) and MurguIescu and Segal (study of the kinetics of heterogeneous reactions 

by thermogravimetry). 

42.2. D$erenrial met/rods 
Differential methods are based on theuse of the dependence of the instantane- 

ous reaction rates, (&/dr), on the temperature, r This application seems to be simple 
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and, in some cases, is able to circumvent difhculties found in many of the so-called 

“integal -_ methods where the direct dependence of the fractional conversion on 
temperature is used. Howe\-er, they sutTer from an inherent weakness such as the 

magniiication of csperimental scatter due to differentiation which thus produces the 
necessity of very precise and tedious recording. Many differential methods assume the 

existence of a single reaction order. JZ. as an empirical constant [see eqn. (4.24)]. The 
most widel_v used method of this kinetic analysis of TG data is the differcnce-differen- 

tial method 5rst introduced by Freeman and Carroll”*‘~, on the basis of f(z) = 

(1 -Z$_ 

410gFT = 

which can be rearran_eed in two different \vays’“: 

(4.42) 

(4.43) 

These equati.ms have been empIo_vcd to determine the kinetic parameters, E and 
n, from TG curves with a reported success not onIy for the degradation of poIymers 
but also for simpIe inorganic decomposition reactions_ However, at the same time, 
they have been subJIzcted to much criticism’“. It is obvious that the magnitude of 
errors depends on the position of the point j. on which the kinetic anaIysis is being 

performed * ‘- “_ Considering an approximately constant experimental scatter, the 
determination both at low and high conversions will be quite erroneous. The disad- 
vantagx of this method, the usual graphical determination of rates, may be improved 

by numerical solutions such as”: 

(4.45) 

Where Q is the constant time or temperature intervai of scanning and A; is the differ- 
ence between j and ji I points of k order_ On introducin,o eqn. (4.45) to eqn. (4.42) 
and ne@cting terms higher than first order, there is obtained the expression 

[ 
10g 

LCjiz-‘Cj I[ = n log zc, -";-+I zr_]-&[:;:r;,"j- (4-W 
u;-+1 -‘IT,- 1 

This is suitable for the simple numerical method of thermogravimetric data where it-j 
and U-, are the instantaneous(j) and the final (co) measured weight loss. For a precise 
determination, the electronic or poIynomia1 derivatives are required. Flynn and Wall* 9 
pointed out, however, that the diflerence-differential method gives only a procedural 

n and E, particuIarIy where an additional competitive or indepsndent reaction takes 
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place, and treatment of each linear-like range independently- does little to improve the 

results (see section 4.3). 

This disadvantage may, of course. be improved by direct use of a less formal 

case-model. In the case of nucleation and crystal Srowth. the ~cneral function is giLen 

by eqn. (4.26). i.e., f(x) = (I --1) (-ln( I -z))~ and thmG3-43a-44 

A log [(dzldr):(l - z,] 

Alog(-in(I--2)) ]= -&[Alog;:;)&,,l+P 
(4.47 j 

Generally. the f(x)-function is determ.wd _ 1,v two csponents, II, 111 or p jste eqns. 

(4.25) and (4_32)]: for the s- imultaneous Letermination of three kinetic parameters 

(E. n, tn. or JI). it becomes necessary to resort to a numerical method of calculation_ 

For esample, the equation* 

2_3 R (AljT)+ntA 102 rtnb log (I -2) (3.4s) 

andior 

A log 5 = 
0 

-&(AW +jtA 10s (1 -~z)+pA log (-In (1 -x)j (4.49) 

forms a set of non-homogeneous Iinear equations for different values of ;L and T 

scanned at equidistant points. 

A radical simplification includes the assumption” that the reaction rate, dr,:‘dr, 

is influenced more by the change in the temperature-dependent constant than r,y the 

change in the function f(x). In such a case the F :action mechanism is not im;>ortant 

and E can be roughly calculated by the equation: 

(4.50) 

This is believed to be true when working in the initial part (0.2<r<0.5) of the 

si_gnoidally shaped curves of r vs. T. (or close to the maximum values of d’r/dt’). A 

comparison of kinetic data thus calculated for the thermal decomposition of KMnO, 

is ,niven Ja in Fig. 4.5 using eqns. (4.41), (4_43), and (4.50). 

For a kinetic analysis which utilizes the detection of the volume of v-olatilized 

reaction products (or products in an inert gas, as for gas chromatography or mass 

The exponent factor nz in eqn. (-IAS) may also bc dctcrmincd in analogy with the above simple 
difkencc-diffcrcntiai methods. After differentiating with respect to log I and rearrangement it gives 

for fixed values of II equal to, e.g.. 2. 1 and 1!2. WC notice once more that E and m are procedural 
values and it is unnecessary to assume them to be constant in the whole reaction region. But. in fact, 
any observed variation of m would ha\-c to bc quite large to bc significant enough. For detailed 
mathematical analysis of formal descriptions used in non-isothermal kinetics see ref. 43. 
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Fig. 4.8. Exampie of the manual evakation of :I TG curvea’. (A) for the decomposition of freshly 

powdered KMnO* using differential (C) and difierence-differentiaJ (B) methods (see text). The most 
linear plot is obtained assuming phase-boundary reaction s the rate controlling process. 
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spectromete) the differential method was used by Jiintzen and Van Heeks’-‘6*9’. 
Assuming 3 model relation of n-th order with regard to the volatile product, the set of 
equations given in eqns. (4.34) to (4.37) is obtained (see section 4-l .3)_ The reaction 
order is then determined either b_v a method similar to Kissinger”, which is based on 

peak assymetry, or from the position of the maximum reaction rate, similar to the 
method of Horowitz and Metzger”. CaIcuIation of E and 2 is made from fhe half- 

width of the peak and from the correspondin g temperature at the maximum rate. 
Nomogramatic evaluations were aIso used by Van Kret-elen et aI_“_ 

GeneraIIy, the plots of rates vs. temperatures exhibit a masimum (drdl-),,,, 

except when the reaction order is equa1 to zero. In such a case, the second derivative 
of the kinetic equation must be equal to zero, or 

Kissinger’ 5, and Horowitz and Metz_gerys have shown that the term, (I -z).,,, , 

is a constant for a given value of n. On takin : logs, and rearranging theequation is 
obtained, 

4 El 
IogT’= -- - MX ( > R Lax 

(4.52) 

which was used for DTA measurements by Kissinger” and Reichs3. These equations 
were first der%ed for first order reactions by Murray and White*’ and Tsuzuki and 
Nagasau-a”. Van Krevelen et al.** plotted families of curves for various J,,, for 

log (T(dz;‘dT)),,, and log (AT;‘J),,, vs. log (E/R) for first order reactions (where AT 
is the half-width of the differential curve for easy E-scanning)_ Turner et aLs’ later 
refined these relations correlating E/R to J,,, and AT for n = I snd j/2. Kissinzer75 
developed a shape index, S, defined as the absoIute value of the ratio of the tangents 

to the differential curves at the inflection pcintj. and related them to the reaction order 
by the equation, n = 1.26~~“. Fuoss et aLss sugested the determination of three 

maximum vaiucs, ‘f_, (dl,ldT),, and (I -r)_, from the inflection poir t of the 
inlegal curve for the consequent evaluation of the activation energy by 

E(1 - +Llar 

ITlax = 
. 

nRT’,=, 
(4.53) 

However, (I - z),,, is reIative!y independent of the heating rate, +_ and may be 
expressed by means of ni5*‘* because of In (I -r&,=X = (l/(1 -TJ)) In (IJ)_ Introducing it 

back to eqn_ (453j S 

E RTz&“/(“- 1) _ (4.54) 

Flynn and WaII” pointed out that if (I -z),, is independent of $, then T,, (dzj’do,_ 



must aiso be independent and eqn_ (4.52) may be transformed to 

SimiIariy, Farmsrs5 developed an eqxrtion for T,,,. the temperature at which the 
con\-ersion reaches O-5, usinS 

where r= is a function of E/RT_ 

A mathematically simpi e ditTerentia1 method for JetermininS kinetic para- 

meters is a modifkd Arrhenius plot given by eqn. (-1.41) Ma~nusson’2. KofstandS6. 
Barrer and Bratt”, _ Xewkirk”‘. Incraham and Marrier “, and Carroii and Mancheg6. 
employed this equation on the basis of the reaction order. n. 0thers43a-9’-9” have 
suggested the use of eqn. (a-1.41) by testi r?e different model relations of f(z) to remove c 

;he order of reaction_ Anderson” solved three simultaneous equations for eqn. (-!.-!I) 
at three difi;-rent 4 vaiues computing the parameters, 2, II and E at a series of 
constant ( I -I) values. Friedmen9r applied the ,nenerai form of eqn. (a-ii) to the 
terms. (dz;dT) and T’s_ A plot of ios(dz.‘dT) vs. (i.‘T) gave a slope of E.f2_3R 
and an intercept of log [Z f(z)]_ This rncthod has the most zenera use in computing 
Doyle” substituted Z, $ = esp (E;RT) f(r)c(d$dT) into eqn. (3-41) and together 
with a one term apprcsimation of the ptx) function. obtained 

(4.56) 

This method is suitable to obtain a rot@ vaiue of E from a sin$e point j. The error 

in E depends on the value of E,,‘RT and lies within 4 to 16 rciative percent (for 
E/RT= IO and 50, respecriveiy). 

Flynn and Waiix9 suggested on the basis of Chatterjeeg3. the working equation 

A In (drr,‘dt? E A Ia 2 f(u:) 

A(i/T) = i = A in (IiT) 
(4.57) 

[const W] [const d IV;dl] 

which is appiicabIe to t\;o or more runs at different initial sample weights during TG 

measurements_ They reco,nmendedo4 also the caicuiation of an approximate E from 
initial rates even where f(z) is unknown because ail well-behaved reactions approach 
zero order at I -+O. This is only possible for non-isothermal techniques because the 
be$nninS of the experiment is precisely characterized_ In isothermai studies, an 
inevitable time-lag in readins the experimental temperature is always present. In 
general, (dz,‘dT) vs. x plots remain linear to higher conversions (z 0.03) than do 

log (dr/dT) vs. l/T (2 0.01). The best procedure appears to be to plot d;c,‘d(ijT) 



[ = T’ (drfdT)J vs. z having the slope, Ej1.2 2 T, where EjR $ 2T The term Tis the 
average temperature over which the slope is being determined. In practice 

The curves, d;c,‘dT vs. r, are shown in Fig. 4.9. 
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(3.5s j 

Fig. 4.9. Not of raft of a procesc vs. fractional conversion for difierent reaction orders”. 

4.2.3. Integral methods 

The integral methods are simpler than the differential methods as they do not 

invoive the determination of rates even l - ?ugh thev are complicated by the integration _ 
of the rate constant_ Some difficulty, hokvever, may arise from the cumu!ative character 

of the vaiues” evaIuated by an ir,tegraI method_ particuIar1~ in the case of the 
esistence of a temperature dependent induction period: differential nie*&ods, which 
sive instantaneous vaIues for these parameters. are not so afiected. 

The integral methods may further be divided into two groups: (I) approximate, 

which employ for the rate constant integation an approximation related usually to a 
particuIar esperimwtally determined value such as the inflection point: and (2) bmed 

on the p(x) fhction (see section 4.1.2) both espressed by a limited number of terms in 
an expansion series or tabu1ated. 

In the first serious treatment of thcrmogravimetric data. Van KreveIen et aI.*’ 

used the approximation, T= Ti i 6. where 6 is the characteristic temperature deviation 
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of the instantaneous reaction temperature, ‘r, from the temperature of the infiection 
point, Ti, (equal to T,, scanned in the corresponding derivative curves; see section 
4.22). These authors approximated the exponential integral by substituting 

= [exp f 5 TiIT)IEiR~‘ = [O-365 T/?;:] E,JRTr (4.59) 

which is vaiid in the region, 0.9 Ti < T< I .I Ti. Through an approximation of the rate 
constant and integration of the kinetic equation, they obtained 

g(z) = 
-= dz I 

z O-368 E’RTs -j-MST;+ 1) 
- = - - 

c CP f(z) Q [ 3 Tj E!‘RT-+ 1 

which may be transferred in?o logarithmic form 

(4-60) 

‘Og g(%) = ‘Og C6, --[(AIT;)+ I] IOg T (4.61) 

The constant. Cb I, is given in eqn_ (4.60). Eqn. (4.61) can tbe tested for linearity by 
plottinr loo Tvs. _ 1s~ g z) for various model relations of g(z). 

fior&nz and Mitigc ,- r7’ simplified the expcnential integral with an approxima- & * 
tion similar to but simpler than that of Van Krevelen et al.” (see eqn. (4.59)). They 
defined a characteristic temperature deviation. S, through the equation 

3 1 1 1 6 -=------_ =-+- 
r T,t6 Ti(l +b/‘K) Ti Tin 

After substituting and integration, the expression is obtained 

(4.62) 

g(z) = (4.63) 

Assuming the vafidity of order, R, the multiplication term, EjRT’, can be replaced 
through the second derivative [given by eqn. (3.51)] yielding in the logarithmic form 

(for n Zl): log[I-(I-#-q = log(l-&E@MT,t) X d (4_64a) 

(for n = I): log C-IOg (l-z>3 = -_Iog 2.3-_El(2.3 RTiZ) X 6 (4.64b) 

where the relationship between values of order, n, and residual fraction, (I -z), is 
glen in Table I_ l_ Gyulai and Greenhow 26b recommended the use of an improved 
form (I --z)~ = 1.0622”‘I-“‘. 

This kinetic method of evaluation was also used by Logvinenko et al.99 in 
chromatography. Tl~y also derived an equation for a rough calculation of E from 
two points, T and I (= partial to totaf peak area), obtained by plotting a line 
parallel to rime axis at O-632 times the height of the peak, or 

E _ nR7-* Tz log [(l -a,)/(1 -x1)1 - (4.65) 
G--T* 

This expression, unfortunateiy, has little practical use. These authors further 
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TABLE 4.1 

DAT.4 FOR INFLECTIOS POIbTS OF TG CURVES FOR VARIOUS 
REACTION ORDERS, n 

n (I -z)‘ = nx:< i -=> n (I_,-& = n’“:-.-’ 

0 0 1 0.5 
lj3 0.192 3 0.576 
I/2 0.250 4 0.53 
2!3 0.298 5 0.669 
I 0.368 (= I:le) J.9 0.919 
3!2 0.444 co 1 

investigated the applicabiIity’OO-lo I of the Horowitz and Metzger’” method for the 

use of more general kinetic equatiorv [Johanson-Mehl-.4vrami-Yerofegef-KogIo- 
morov eqn. (4-231 and found that a plo; of log [-log (I- z)] vs. (7- Ti)!(rri) gave a 

straight line with a sIope of Ei2_3 R holding a fixed order of n = I_ They noticed that the 
calculation with the fixed exponent, n, decreased the value of the activ-ation ener_gy, 
if n> I, and increased this value, if nt I_ Dhsrwadkar and Karkhanavala”’ pointed 
out the change of Ti with sampie size and the rate of heating_ Hence, they assumed Ti 

not to be representative enough for the actual sampIe telmperature- Due to self-coohng 
the temperature deviation from the true vaiue is a maximum just when the reaction 
rate reaches its maximum. -Therefore, they invented instead the temperature of the in- 
flection point, Ti- the temperature of the inception of the process. Ti, (where T= 
Tin+ tp), and derived the modified form of eqn. (4.64), or 

Iog [--log (1 -%)I = 
E 100 

2.3 RT,Z, - (Tri”-_n) 
P+-G, (4.66) 

Tcin is the temperature of the process termination_ This equation is reported to giv-e a 
satisfactoriiy correct vaIue for E. This is in contrast to the origina! equation (4x54), 
particularIy because both values, r and 3: ( ICKkp/!T,i, - T,,,)), are used in a normalized 

form. 
Using a two-term approximation for the p(x) function, Flynn and Wall I9 aiso 

suggested an improved version of eqn. (4.64), or 

(4.67) 

where T,, is any reference temperature_ The numerical constant_ 1.052. may be 

improved by means of the tabulated p(x) function. 
Reich”’ pointed out that at a very smaI1 and nearly constant &T, t_he integration 

of the rate constant may be roughly carried out by taking the exponent as a constant 
and replacing dt by AK;@. which then yieIds 

1% g(r) r - &* i- Iog f AT. (4.68) 
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(It is interesting to compare eqn. (4&S) with eqn. (4.74)) 
On considerins constant weight Ioss points for two different heating rates* 

(4.69) 

Flynn and WaI19’ derived a simpler equation in comparison to eqn. (4.69) using 
Doyie’s approsimation for the p(.s) function of eqn. (4.21) 

E = -4.35 ’ *OS @ 
A (l/T) 

(for (1 -r) = const.) (4.70) 

(see also Fig. 4.IS). 
Astiv-ation energies may be quite accurateIy and simply obtained by successive 

approsimations from tables of Iog p(x) and A log p(s) for various _Y = E/RT. Ozawa5’ 
atso derived eqn. (d-70) but employed it without further refinement to calculate E at 

several z values and to construct theoretical masters-curve similar to the work of 
Doyle” and Satava’* _ .A more accurate esperimental master curve is obtained by 
superimposing the curves of log Q vs. I:T at several heating rates by displacement 
along the abcissa (see also Fig. 4.16). FIynn and WaI19~ considered this method to be 
one of the best and most generally appIicabIe96; 

The espression is: 

fogg(2j = log% 
R 

- log ~-22.315-o_457 E 
RT 

(4.71) 

From the slopes of plots of !o_g x vs. I,‘T at constant Z, fosg(z) vs. l/Tat con- 
stant 4. and for log g(x) vs. IGS Q at constant T, there is obtained 

2% log g5 N 

AtliT> - 
_o_457 5 = A lee a-4 

R A(l,!T) 

[z = const.] [f$ = const.] 

and 

A log &a) 
Z I 

Aloe@ 
(= horizontal plot) 

(4-72) 

(4.72b) 

[T = c0nst.j 

The right-hand side of eqn_ (4.72) may a1so be applied to a sir@e thermogravimetric 
cun-e and has some advantages over the methods of Farmers5 and Coats and Red- 
fern”’ (eqn. 4.73). The use of the MacCaIlum and Tanner approximation*’ for 

*30yie’0e corrected another similar equation in-tented by Reich and Levi”’ to thr form, 
E= 2.3 10s (A$,4 l).‘(I’TI - I,‘T2) R. where A =:_-I I is the ratio of t--o correspondins initial areas at TX 
and T2. This equation shows 3 lack of sensitivity_ 
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log p(s) equal to 0_4S2S E”-535 I +(449+217E)..T gives a similar resuItq”, ix.. 

[A log &A(l/7-)], E -_(450+220Ej. 

Coats and Redfem‘ OS- * O9 used the approximation for the p(x) function as 

exp (-x)[(l~_r)-(2~xzj] and obtained 

(4.73 j 

where the first term on the right-hand side of eqn. (4.73) is a slowly chartgins function 

of the temperature and may be considered as being constant in a narrow temperature 

interval. Hence. a plot of 103 (g(z)l:T’) t-s. (I/T) appears to eive a straiht line u-hen 

the mode1 relation , g(x), is known or is being tested for a Iinearity. This equation may 

be applied for low level conversion data as well *09. L qssuming all reactions behave as 

zero order (z-+0)_ Hence, The plot of Iog (x/T’) \-s. ( IjT) should eive a strai,nht line 

for z not exceeding 0. I. 

In the recent literature, attention has focused back to eqn. (4.23). ~(1) = ZE.IRQ 

x p(x) (assuming the p(_r,)-term negligible). first suggested by Doyle’” as a trial-and- 

error curve-fitting method for the determination of activation ener\;. Zsako3’ 

attempted to simplify this method by usin 2 this equation in the Iogrithmic form 

log g4 = log (g(rlj)-log (p(s)> = const. (4.74) 

where the constant, 1~s (Z(E.‘R) &), depend, only upon the nature of the material 

studied and the heating rate but not upon the temperature. This constancy suggests 

a quantitative method of testing different model relations. S(I). by means of the trial- 

and-error method to determine the apparent activation energy consistent with a 

f_~_.~-- - ------- _~__ __-. _____--~- ._ 
. \ 

‘\ 
14 - 

. . 

Fig_ 4.10. Plot of log pfx) vs. absolute temperaturc’“. 
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chosen function of g(r). Satava and SkvBraSo went even iurther to simplify the 
tedious procedure3’ and suggested a graphical comparison of log (g(z)) and log(p(_r)) 
by means of nomograms_ The log (g(r))-values for various rate processes are plotted 

vs. thecorresponding Tvalues on trans?arert paper on the same scale as the standard 

plot of -log (p(x)) vs_ r The plot of log g(z) is placed on top of the log (p(x)) dia- 
gram so that the temperature scales coincide and ii is then shifted along the coordinate 
until one of the log g(z) curves fits one of the Iog (P(X)) curves. From this log (P(X)) 
function, the corresponding activation energy, E, can then be obtained (see Fig. 4. IO). 

Later Zsako”, improved DoyIe‘s isothermal methodza of deriving activation 

energies from theoretical curves by an iterative procedure, suggested that log (p(x)) 
may, to the first approximation, be a linear function of reciprocal absolute tempera- 
ture_ MacCalIum and Tanner”’ and Satava” assumed furthe; that if the difference 
between functions of Iog (g(r)) and Iog (P(X)) does not depend upon the temperature, 
and if log (p(r)) is a Iinear function of I/T, then log (g(z)) must also be a linear func- 
tion of I!T(see Fig. 4.1 I)_ This property of log (g(z)) can be used for the determina- 

+Pe 14.5f6’ xe’p(x) 

Fig. 4.1 I _ Diagramatic representation65 of eqn. (4_74)_ 

tion of the probable reaction mechanism with regard to both the reaction order 
conu&s, 0-r more accurately, the particular model relation for a heterogeneous 
process’9. It IS e-kdent that a’pIot of log (g(x)) vs. (I/T) caIcuIated from the esperi- 
mentaliy obtained data, x and T, becomes linear onIy for such a g(r) function which 
corresponds to the most probable rate-controlling process (see Fig. 4_ 12) This is true 
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Fig. 4.12. Procedure for the evaluation of TG curves -19 I_o\Vci curve complies with kinetic equation, _ 
g(z) = -Iog(I -I). E= 30 kcal mole-*, Z= 1013s-*moI-1. 4 = I ‘C;min. Upper cumes are plots 
of log g(z) vs_ IjTz caIcuIated from TG curve for various kinetic equations (see Table J-1). The 
straight line corresponding to the kinetic equation of rzndom nucleation coincides with the plot of 
-p log p(x) vs. Ilr, for p= I siopc with E = 30 kcal. 

for the temperature interval of process duration not exceeding IOO’C, as shown by 
Sest5k 18_ From the slope, tgp, of the straight line the rorresponding activation 
ener,v can be calculated as follows: 

(1) As a root oi the derived quadratic equation employing the first two terms 
of the expansion seriesa 

E _ 1.987 
- 2 (-tg P+(tg’jT+8 tg j? x T)s’2 (4-75) 

where T is the mean temperature of the process_ 
(2) Using a derivative with respect to the reciprocal temperature in the approxi - 

mate equations, log P(X) = -2.315 - (0_4567E/RT), and/or = -482.8E0-“361 - 
-(449+217E)/T, which @zs’8 E= -[449;tg1If2.31~217. 

(3) By an iteration procedure65 where E, to a first approximation, is inrro- 
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duced by the equation, E= (4.567 tg fi-?RT). and then substituted into x = EiRT 

where Tis the mean temperature_ This is used as input data for the equation’s-49-6’ 

E = Re”x’p(s)tgp = Rtg 
3! 

1 -z-+7- .__ i 
s s- 

(-1.76) 

where one iteration Ioop is usually sufficient to yield E with a high enough accuracy. 

The vaIue of the pre-exponential factor is then obtained6” b_v introducing the 

vatues of E, 4. log (g(x)j. and log (p(s)) with appropriate values of Q and T. into the 

modified eqn (4_74)_ 
* 

rag z = Iog -R; + log g(z)--log p(x) (3.77) 

A similar procedure of kinetic rate determination was suggested b_v others”‘. ’ 1-c- ’ ’ ’ : 

particuIarIy. the use of dilatomctric measurements in sintering investigations shouId 
be noted’ ’ 4_ 

It is clear that owing to the small differences between the values of the individua1 

case-model functions_ the determination of the rate-controlling process is not com- 

pletely unambiguousJG-“9-“3- ’ 3 Ia_ This. of course, applies to all methods which 

employ a test of linearity, e-g_, eqns. (4-6 I ), (4_64), (4_73)*_ Besides the difticulty due to 

small deviations from the Iinearity (see Fig. 4.12). there arises another problem 

connected with the direct determination of the value of the esponent-factor, rr for the 

function, (-In!1 -z)lir [eqn. (H5)]. Double Iogarithmization gives the Ieast sensi- 

tive fwction but it cannot provide any further information about the exponent, r, 

from Ihe plots of (Ijr) Iog ( -In (I - 2)) vs. I/T because the slope contains the value of 

a muItipIying const,wb3 as well. It applies also to the case of the esponent 3, if com- 

paring’rz Jander’s equation for diffusion_ [I -( 1 -z) ‘j3]‘, with the phase-boundary 

equation, [I -(I -z) ‘13], both of which are vahd under spherical symmetry. An addi- 

tionai criterion is needed for a correct decision about the rate-determining process. 

It may be. for esampIe_ the value of the pre-exponentia1 factor which, for most simple 

decompositions. should not differ from IO” by more than two orders of magni- 

tude. 

Another source of information may be the comparison of results obtained 

through the differential and integral methods, as noted by Sest5k63. Assuming a 

simple form of the rate constant, k, in the original form of the Johanson-MehI- 

Avrami-Ycrofeyev-KogIomorov method. eqn. (4_25), then the algebraic manipula- 

tion necessary to obtain the functions, g(x) and f(_r), changes its value to k’ = rX_ fir 

(or E’ = c/r). This Iast value takes part in the p(x)-function. i.e., p(x) = p(E,;r RT). 
The difi’erence-differentiai method’& (eqn. (4.47)] gives the procedural slope of 

E:4.57r while Satava’s integra1 methods’, on pIotting log (-In (I- r)) vs. 1 /T. yields 

the procedural sIope of rE;4_57r = E/457. Therefore, the ratio of these two slopes may 

provide an estimate of the exponent factor, r. The same meaning was obtained by 

NikoIayev et a1. i” ’ that the only comparabk: values of the activation energies are those 

*See iVore added in goof on p_ 500_ 
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Fig. 4.13. Integral methods for manual TG curve evaIuation4i_ Compare w-ith Fig. 4.8 and the 
following table. obtained by the least squares computer evaluation using Z?ikvira’s programz9’ for 

the required accuracy of I@ percent in the calculated linearity region. 

Case-model 

[l -(I -I)*‘31 
[! -_(I -z)l;‘]* 

1 --jz-_(I -z)= 

[I -(I -z)r’-] 

(I -2) In (I -z)+sr 

[-In (I -z)]*‘~ 

[-In (I -3t)] 

Infercal of linearity 
(in z) 

-- 

WY3 0.1-0.93) 
84?& (0.1-0.93) 

84% (0.1-0).93) 
77% (0_1-0_86) 

63% (0.13-0.76) 

52% (O.w-O.57) 

52% (0.06-0.57) 

E Z S~anakrd 

(in KcaT) deciarion 

400.8 9.0 x 10’3 0.028 
83.5 9.3 x 103’ 0.028 

77.2 1.4 x 1029 0.05I 
39.0 2.1 x IO’3 0.06 
74.2 2.7 x 1028 0.058 
22.8 3.5 x IO6 0.023 

47.5 2.7 x 10L7 0.021 



obtained with an identical value of exponent factors or caiculated to the same value*, 
conveniently eqiial to one. 

The actual use of integra1 methods for kinetic data calcuIations is shown in 
Fig 4.13 for the thermal decompositionJ” of KMnO” emptoying the methods of 
s atava-= (eqn_ 4-74) and Coats and Redfern lo8 (eqn. 4.73). 

1.3. Spccii7[ cases of ei-ahariorr 

43_ I_ Rerersible reaclions and proxinliry to eqrtilibriuns 

In reaiity, zvtn p;_ocess car. be assumed as being reversible and the overa 
reaction rate mav !%;I be expressed as the difference of both of the opposite rates 

t = ‘=-for - rrc-5 = 7ior [I -exp (AGIRT)] (4.78) 

where r,,, is the rate of the forward reaction and r,,, is rate of the reverse reaction_ This 
was actuaily derived by Bradley 1 * ’ for transformations passin g through rhe vapor 

phase and satisfactoriIy applied to describe various heterogeneous processes. The 
term, AG, is the driving force which, in the case of chemical reactions, may be 
expressed as AG = RTIn (XiK), where ii’ is the equilibrium constant and X is the 

product of activities of a11 components. The change of the Gibbs free ener,oy, AC, 
for a reaction reaches large negative values for the stases distant from equilibrium 
(AC-+-- oc and exp (AGIRT) + O), i.e.. the total reaction rate is independent af the 
driving force, r = rror_ In the vicinity of equilibrium (AG --, 0), the expression., (1 -exp 
(AG,‘RT)), may be expanded according to *Jle Taylor series so that r = rf,,(AG/‘RT) 

when negIecting the terms of higher orders. Considering the opposite processes as 
obeying the same rate controiling process (diffusion for reactions in a ctindensed 
system) eqn. (4.75) may be rewritten as 

dz_!dr = kforf(r*)-kkrcv f(z) = k,,f(z) [l -exp (AG/RT)] (4.7Sa) 

Such a corrected kinetic equation has a IogicaI justification in the activation 

energy dia_mm (zee chapter 2, Fig. 2.1) and can also be derived by means of thermo- 

dynamics of irreversible processes_ Under non-isothermal conditions the integration 
of eqn_ (4.75) yieIds 

.dcr) = 5 cp(x)-P(x~g)l - Z(A;;-E) b(y-xx)-p(y,,-XJ-J (4.79) 

where x, _r,,, y and y,, are E/RT, E.‘RT,,. AGIRT and AG,I’RT,,, respectively. 

Because AC = AH- TAS and assuming that AH and AS are temperature independent, 

*Upon using Van ‘t HoffreIation these authorsxo~ also derived followingequation for the correlation 
of actktion energies 

whew coefficient < hzs value 0.705; 0.667; O-583; OS and 0.453 for n= 1!3; 1.2; I; 2 and 3 respec- 
tiveiy_ The term LVI is the heat of reaction aid i desi_gnates the inilcction point. 
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I I 
2.5 26 27 L+,OJ 

Fig_ 4.14. Effect of the heating rate, 4. on the dehydration of z-CaS04- fH=O atpflzo = 0.025 atm.6s. 
Extrapolated linear parts corresponds to E = 30 kcal mole-‘. for g(z) = --in (1-z)). 

then AS= AH/T,, where Tcq is the temperature of equilibrium. After rearrangement 

g(a) = z$ [P(X)-P(x,,)] -exp (MIT,) E RO rP(x’)-PKJl (4.80) 

where E’ = E-AH, . ..I = E’iRTand xCs = E’/RT,,. If E’ is small the second term on 
the right-hand side of eqn. (4X0) can be neghzcted and the term, (Iog g(z) - log b(x) - 
- p(x,,)]. is a constant. However, in comparison with the previously given evaIuation 
method (see Fig. 4_ 1 I) neither Io_g Ip (x) --p (_r,,)] nor g(z) are linear functions of l/Z 

This can be demonstrated6’ in the case of CaSO,-tH,O dehydration which proceeds 
ciose to the equihtrium temperature. It is evident that the g(z) function then requires 
the same curvature as log [P(X)-p(x,,)] and the difference between both curves 
depends only on the vaIue of the heating rate appbed, 4. The direct determination of 
g(z), E and 2 would thus be almost impossible but, with a sufficiently high heating 
rate, the curve of log (g(r)) vs. I/Tapproaches a straight line suitable for a simple 
treatment (see eqn. 4.74), as shown by Satava and &st5kGS. Thus, it is evident that 

the proper choice of a sufficiently high heating rate is essentiaI for kinetic data caicula- 
tions because at too Iow a heating rate the process is completed in the vicinity of the 
equiiibrium temperature, Tcs (in the curved part of the plot). Kinetic data calculated 
under such conditions are erroneous and the apparent E is Iarger than the true E. 

4.3.2. Simple parallel and consemrire processes 

If multipIe reactions take place in 2. process, the experimentally measured curve 

represents the sum of the individual contributions, as was shown by FIynn and WalI” 

and Jiintgen and Van Heek5’. For a proper ana y 1 sis it is necessary to determine the 
partial steps, N, and to find a method for the direct study of (N- I) processes and to 
compare the partial curves with the sum of the curves. It is evident that the compir;l; 
value of parameters characterizing the summation curve cannot be attached to a 
particuIar physical meanin,. 0 An ihustrative case was given by Jiintgen and Van Heck’ ’ 
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dV 
dT 

500 600 700 800 TPK] 

Fip J-15. Over41 &Lent gas tune tdcuhtcd for givc-cn composite case. individual parallel reactions 
(dashed Iines) are for frrst order with E from -%S to 67 kcal:‘moIe. Z = I x IO’ s min- I, Z V0 = 9.6 cm3 

--I g - Resc!ting peak corresponds to E = 20 kcal Z= I x IO’ min-‘, Y0 = IO cm3 gut and 
0 = 1 ‘C;‘min (according Lo Jiintgen and Van Hcekss). 

and is reproduced in Fi g. 4.15. The summation curve is composed of eight partial 

processes the activation energies of which Iay within the region of E= 48-Q kcal 
rrxle- 1 (2 = IO’ ‘)_ A n analysis of the summation curve leads to an apparent activa- 
tion ener_gy va!xe which is equal to 20 kcal mole- * (Z = IO&). Ffynn and Wa11’g 

reported that two parallel processes could be separated by a suitabie choice of the 
heating rate so that the kinetic parameiers of each process could be calculated from 
the corresponding part of the summation curve. A necessary condition is that their 
activation energies be diffe:ent19-55. Flynn and Wa11x9 also showed an example of 
two parallel independent reactions where a fraction of reactant, A,, voIatiIizes by 
first order kinetics (the Arrhenius parameters_ Z, and E,). SimiIarIy the reactant 
remainder. (1 -Al), possesses the parameters, Z, and E,. After the integration pro- 
cedure, the equation is 

(1-z) = Ax exp -z [ ( , p(-r,))] + (I --ill) [exp (- z p(.s,))] (4.8!) 

where p(_rO) is nedected. 
Another case in exhibited I9 bv two consecutive reactions where the initia1 _ 

reactant may be volatilized by two aIternative paths of competitive character, each 
having a rate proportional (accordingly to eqn. (4.8 I)) to the first power of remaining 
voIatiIi=We polymer (Z,, E, and Z2, E2), or 

EZ Zz 
P(X*) - OR P&l 1 - (4.82) 
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Fig. 4.16. Effect of heating rate on residual fraction WL ttmpcraturc for composite cases. where full 
line corresponds to independent first-order r cxtions (E = 30 kcaI mole- ‘. Z = 4ASS X IO6 see- ‘), 
dashed line competitive first-order reactions CE = 60 kcal mole- *, Z = I x 10 *’ see- ‘) (according to 

Flynn and Wa11’9J. 
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Fig. 4.17. Effect of heating rate on the thcrmo_pravimctric rate vs_ temperature for composite cases, see 
Fig. 4.16. Case (a), competitive-e case (b). independent reactions”. 

These two cases may be separated by appiying various hating rates, as is shown 

in Fig. 4.16 (the effect of heatins rate on ins residual fraction) and Fig. 4.17 (the effect 
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of heating rate on the overall reaction rate). Inde_pendsnr reactions give at higher 

heating rates the appearance of one single curve as these two reactions broadly overlap 
each other. At decreasing heating rate, the curve tends to fiatten as the two reactions 

begin to separate unti1 two peaks are obtained in the differential curve. On the other 
hand, for two competitive reactions, the low activation energy reaction takes over 

aImost completeIy at Iow temperatures and beating rates. At the higher heating rate, 

this reaction takes place only during the first third of the curve while the hi$r-enera 
reaction considerably modifies the Iatter portion of it. The high-energy reaction 

causes a temporary increase (dzjdT), with increasing 4 while in a simple reaction 

the maximum rate decreases upon increasing 4 and T_, . For equal activation energies 

these two consecutive first order reactions appear as a simple first order reaction with 
no regard to the difference in pre-exponential factors. For evahration of this effect, 

the Flynn and Wallxg method, eqn. (4.X) is perhaps the best method to distinguish 

them, as is demonstrated in Fig 4. IS. In general, employing very low heating rates 
wih best isolate competing reactions while fast heating rates are best for independent 
reactions_ 

4.3.3. Non-uniform and cyclic hearings 
Under actual experimental conditions it is almost impossible to attain a per- 

-01 

Fig. 4.18. Calculation of kinetic data according to Flynn and Wall*9 (cqn. 4.70). The logarithm of 
heating fate is pIotted ‘CJ. absolute temperature for CURES in Fig. 4.17. Each line constructed for 
muItipIe VaIues of a_ 
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fectly linear increase of temperature with time. There are two probable sources of 

error, namely, the heat evolved or absorbed in the process (self-cooling or self-heating 

of sample ’ 1*59-60) and the failure of the temperature control equipment to respond 
IinearIy to the temperature (as for example, thxmocouple volta_ee not strictly pro- 

portional to the temperature). Such departures from linearity do not necessarily lead 
to fundamental errors of observation but a correction of the measurement that 

corresponds to a linear temperature vs time relationship is essential. The correction is 
ideally made by introduction cf the proper monotonic form of the function, T= T(r). 
Aiternatively, it may be more practical to obtain the departure from the linearity in 

the TVS. f curve in the form of either an esperimenta) set of points or polynomial 
fitting with a computer. The correction of the measured thermal property is then 
straight forward. Szekely ’ “-’ I8 et al. and VachuSka and VoboPiI * ” employed second 

derivates in the ordinary differential equation to calculate the instan*tineous values of 

kinetic parameters from the 

(dlj’d%,,,,,,, - 

f’(z) _ 

f(z) 

instantaneous vaIue of the heatins rate, +insg= 

‘T’(dr/df) E 1 +- - Qinst R (4.83) 

which can be treated as a linear equation by plottin: the contents of the square 

brackets against each other; the slope is f’(r)jf(z) (in the case of order, equal to n) 
and the intercept, E/R. 

FlynnTo claimed that the kinetic parameters are best determined under iso- 
conversiona conditions if the temperature was chansed rapidly from 7” to Tit I, as 

can be seen in Fi_g. 4.19. The rates may be extrapolated to the same degree of con- 
version of different temperatures according to 

E In (dz!dr)JIn (d-;rjdr)j+ 1 
-= 

1 1 
[Z = const.] _ (4233) 

R --- 
T,+, Tj 

rate 

Fig. 1 L19. Method by Fly~‘~. 



If the temperature is varied in a slow harmonic cycIe, T= TO; T sin WI (as 
shown in Fig. 4.19), the rates at the temperatures, Ti = T,-,+ TA and Tj+ I = TO - T,, 
may be obtained at the constant conversion from the upper and lower parts of the 
curve. These methods have the advantage that there is no sample variation and that 
they give instantaneous values of the parameters_ Practical considerations require T 
to be smaII, but other sets of temperature may be tested at a number of conversions 
in this manner_ The constancy of the rate constant, kj = Z esp (- ,&/RTj) may also 
be tested at various constant conversions by several runs at different heating rates. A 
sirniiar method was used by Reich et al. *o3-*o5-1 “. 

4.3-4. Heat transfer as the rate-determining step 

A quite different situation arises when the experimental arrangement is so 
designed that the heat transfer between the source of heat and the reacting interface 
becomes the rate-controlling process. Assuming steady-state conditions, then 

da I dq ++(T- TR) _---= 
z- J;4H dt V. 4H 

(4.85) 

where dr/dr is the rate of a process related to the reaction volume, V,; dq/dt is the 
rate of heat suppIy, z is the overall heat transfer coefficient, SA is the reacting surface, 
4.His the heat of reaction, Tis the temperature of sample surroundings (equal to that 
on the sampIe outer surface) which increases linearly with time, t, and TR is the tem- 

perature of reaction under which the reaction is assumed to proceed on the sample 
reacting surface S,. For spherica symmetry of the sampIe bulk, S, may be expressed 

s, = 4n(ro -y)z = 4irri(l -a)2f3 (4.86) 

where r. is the initial radius of the sample and y is the thickness of the product Iayer. 

Combining eqns. (4.85) and (4.56) 

dr/dt = 3r(T- TR) (1 -r)2f3/4Hro_ (4.87) 

After the integration, using t = (T- TR)/4, 

1 --(I -a))‘13 = 2sr +(T-TR)’ = 5 ’ 
0 24Hro t 

(4.58) 

Such cases were considered by Draper3*’ ‘I as “non-activated processes”. In general, 
eqn. (4.88) hoIds for voluminous sampIesJ6*’ * 3 with weil-defined outer geometry_ For 
more details see the work of Narsimham’ ” who assumed interface behavior and 
steady-state heat and mass flow conditions. The resulting equation agreed with 
expetimental data reported by SatterfieId and Feakes’ 23 for the decomposition of 
CaCO, _ Similarl_v, the detaiIed work of Hills’ 2J treated this decomposition from the 
engineering point of view assumin g the rate-controlling steps to be both the transfer 
of heat to the reaction zone and the transport of carbon dioxide away from it. 
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The opposite case can be met under the assumption of adiabatic conditions for 

an eyothermic reaction, or 

dr 

dr= 

C,(dT/dt) 

VO AH 
(4.89) 

where C, is the average heat capacity. Such conditions are suitable for investigations 
of the thermal stability of compounds in continuous. stirred systems* 25_ In practice, 

;he reaction rate term is replaced by the rate equation Z exp (- E/RT) (I - 1)“. If 
the fractional conversion is eliminated, then 

d7’ 
- = C,.(T,-7)“exp 
dt 

_ (J-90) 

This equation is usuahy employed in a Iogarithmic form. The term, C,, , is a constant 

given by the Iimiting conditions, TO and T,, the initial and the maximum adiabatic 
temperatures, respectively. The genera’. case of a non-adiabatic sy-stem exchanging 

heat with the surroundings is given by the combination of eqns. (4.85) and 
(4.89)’ z5 

da _C,dT_ &,,(T - TR) 

x- &AH dt V,AH 
(4.91) 

which, however, is difficult to solve anaIyticalIy’25*“6. For a detailed integral solu- 
tion, see Dammers et al. I “_ 

4.3.5. SearcJCzg for an adeqziaze kinetic description 

The major purpose of the above methods of kinetic data evahration is to reach 

as close a description of the path of the process as possible under the given experi- 

mental conditions. Besides the ordinary spiitting of case-models due to a simplifying 
homogeneous-like approach’ lo-’ ‘ I* * I3 a11 heterogeneous processes can always be 
broken down into three basic steps’-“‘-56-59-13*; (I) transport of matter; (2) nuclea- 
tion and nuclei growth and (3) phase-boundary reactions_ The not yet considered 

adsorption process can also pIay a significant role as discussed for non-isothermal 
conditions in the rc*Jiew by Cvetanovic and Amenoniya * ” and others’ 29_ Generally, 

there are no absolute methods of selecting a proper case-model but there exist 
pre1iminat-y linearity tests which employ singIe predetermined isothermal runs. 
LiteraIIy, it is a plot of the functions, 

log [-In (I -z)J vs. (time) and/or 
10g [dz/dr] VS. Iog (I- zj 

to determine the vaIue of the exponent-factors for nucIeation and nuclei growth modeIs 
and/or phase-boundary models, respective!y. 

Accordingly, a more genera1 test for isothermal data can be adopted according 

to the method of Hancock and Sharp * 3o who employed a formal function in the form 
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of -log (ln (I -2)) = M In ztln k. By plotting 

-log (In (I -r)) vs. log (time) 

a straight line is obtained having the slope, M, the value of which falls within 0.57 to 

0.62 for simple diffusio;r, 1.0 to I. 15 for nucIei growth and within 1.25 to 3.00 for 
phase-boundary reactions. A possible scheme of steps for non-isothermal kinetic 

analyses is outlined in Table 4.2. 

4.4. Kinetic parameters by diflerential therma measurements 

The usefumess of thermal measurements as a TA method of monitoring and 

defining thermal effects associated with chemical changes and structural transforma- 
tions has been shown in section 2.2. In principie. DTA curves can be used for both 

enthalpy change determinations (proportional to the DTA peak area) and investiga- 
tion of reaction kinetics (influencing the shape and the position of DTA peak in the 
temperature scale, see section 4.1.3). The success of kinetic data evaluations, however, 
has been limited by the difficulties in formalizing the factors responsible for the curve. 
The shape of the DTA peak has been shown to IX a function not only of the reaction 
kinetics6* but also of the geometry and thermal diffusivity within furnace, sample 
and thermocouple assembly’ 3 ‘. I*‘. The calibration procedure wideIy used in the 
determination of heats of reaction is of little actual use in the study of reaction 
kinetics_ Because of the fact that accurate caiorimetric measurements are difficult to 

obtain by means of DTA, reliable kinetic results should not be expected either’33. 
The design of an energy proportionin g DSC technique substantially corrected diffi- 
culties in the conventional DTA system. Despite all of these factors, a large number 
of articles have been pubhshed dealing with the kinetic appraisal of DTA peaks. 

The most simple and widely used approach is that derived by Borchardt and 
Daniels’ 3J*x 35. They assumed experimental conditions under which no temperature 
gradient occurs in either the sample or standard and that the thermal diffusivities of 
sample and reference were identical and independent of temperature and reacticn 

progress_ In such a case, where heat loss is being neglected, the heat balance for the 
rate of reaction gives 

drT iii,, -=- dAT -I- rAT 
dt A ’ dt > 

dz 1 =-- 
dt iii0 

(4.92) 

where fi and 6, are the numbers of moles of the reactant at time E = t and r = 0, 
respectively; A is the total area under the peak, AHis the reaction heat and dAH = dfi, 
C, is the heat capacity of the sample, AT is the temperature difference recorded and T 
is the heat transfer coefficient_ After integration 

Eio--m 1 C,AT =a=- - -iA, 
m0 A r 

(4.93) 



where A, is the peak area to time I_ The values of A can be determined from the DTA 

peak by means of gaphical. numerical. disc and/or analog integration methods_ The 

value of C,!r may be estabIished from the cooling curse of the system as shown by 
Baumgar-tner and Duhaut ’ 3 6 who also determined the kinetic parameters, E, Z, and 

order, n, by means of an integral method. 
For the processes which actually follow the reaction order kinetics, Freeman 

and CarroiiT3 modified eqn_ (3.93) into the difference-differential form 

Ahz(C,~+ =--) _-E A(1 jT) . i4g4) 

A log [7(A --A,)--CPM-] = 2_3RIo_g[*(A-_n,)-C,A=]fn- * 

By ne&cting comparatively small values in eqn. i4.94) a simplified form can be 

A log AT 
-E 

AU/T) 

A log(A--J = 
i-n. 

2.3 RA log (A - &) 

Another method ~-as introduced by Wendlandt ’ “*’ 39 usins the equation 

AT 
log------ = - ’ A 1 

A---.4, 2.3R ? 0 

(4.95) 

(4.96) 

A number of methods have been proposed for extractins kinetic parameters 
from muItipIe DTA runs. Especially prominent is the Kissinger method”. ’ 3o for 
determining E, which was independently deveioped by Murray and Whites0 and 

DaneS and Ponec*“‘, on the basis of the following equation (see also section 4.2.2) 

log (&T&J = -E/2.3 R(l/I,,) (3.97) 

where T_, is the temperature at the maximum rate developed during the process. 
Reed et a1. ’ s1 considered the DTA thermal resistance problems and concluded that 
eqn. (4.97) would be inaccurate if 7-_, were applied as the temperature at the maximum 
of the DTA peak, particularly for voluminous samples (preferably a micro-DTA 
system should be used). RoSers and Smith * a pointed out that the assumed constant 

value of (1 - r),, . :vhich de\-elops at the maximum rate (see section 4.2.2), may vary 
with T_, at different heating rates applied for more complex processes_ Reich* 43 
deseIoped a different equation on the basis of the Borchardt simplification * 35 that 

C,(dA?idt) eAr, or 

E 1 --- 
2.3 R T 

(4.98) 

which requires at Ieast two DTA curves obtained at two different heating rates. 
Reaction order, n, is then determined by the equation 

Iog 5 = 
( > 

,zA Iog i- 10g(b. (4.99) 



483 

These methods. however, share the disadvantage of all isothermal measurements 
where multiple runs are needed_ in addition, it is also rather difficult to reproduce 
precisely the identical conditions for individual experimental runsi3’_ 

AI1 of the abov-e methods usins the simplifying assumption of Borchardt and 
Daniels’ 3’.135 can be rigorously applied only to stirred systems, the theory of which 
was critized by Reed et aI_ ’ J’_ However, it should be noticed that a variety of workers, 
on using the same simplifying assumption_ reached satisfactory results even in anal\;s- 
ing DTA curves for the thermal decomposition ot solidsiG5-* 5J*_ 

Another method of DTA kinetic evaluation was introduced by Rabovskiy et 
al. x45- The method of EIIerstein’” was used to calculate the kinetics of glass transi- 
tions_ The crystallization of glasses was studied by combined methods63-* 55V1 s6 as 
wel! as the decomposition of various inorganic compounds* 37-’ 5 ‘-’ “*I s1 and disso- 

lution of solids in Iiquidsr6’. Kinetics of exptosive materialsis and poly- 
mers6’- *s’*l ” were also investigated. Solving basic DTA equations, Bae’ 65 pre- 
sented a new method for determining the kinetic parameters from a singIe run. The 

determination of the probable reaction mechanism of heterogeneous reactions was 
attempted by Skvara and Satava”. Influence of the individual analytical form of 
model relations, S(I), introduced into eqn. (3.93) instead of order n. is demonstrated 
in Fi,o_ 4.20. 

Akita and Kase’59*x60 soIved basic DTA equations for an infinite cylindrical 

Fig. 4.10. Effect of the individual rate controlling process on the shape of the DTA peak6’. 

*For a critical examination see review by Garn. CRC Critical Reviews, Anal. Chcm., Sept. 1972. p. 65, 
which ako presents a thorough discussion of non-isothermal kinetic analysis. 
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sample with the first’ 59 and later n-th order * bo reactions by Laplace transformations 
(similar to the work of Tateno’ 6 I ) and by Green’s function, under the boundary 
condition of a linear rise of temperature of the outer cylinder surface with time. 
The change of thermaf properties of the samp!e material due to chemical reaction 
is negIected. From these results it was concluded that the peak temperature of the 
DTA curve and the temperature of the inflection point of the TG curve a_& with 
each other within a certain Iimit of experimental conditions, i.e., heating rate, cell si,: 
and kinetic properties of reactant. Some useful diagrams, permitting judgement of the 
coincidence of experimental conditions, were also devised ’ “- * 60_ Thus, these results 
may explain the apparent agreements obtained for the solid-state kinetics_ The neces- 
sary condition, however, is to hold the thermal properties of the sample unchanged 
during the entire interval of the process. This may be achieved by mixing the reactant 
with an inert, well-conducting substance (corundum, noble metal powders such as Ag. 
Au, Pt, etc.) which act, in fact, as a diluting agent to average the thermal properties 
before and after the reaction_ Tratore’ 63 _ investigated approximations used for the 
description of the temperature difference curves of heterogeneous reactions in a 
detailed way, including the accuracy and iimits of the DTA method for the determi- 
nation of kinetic parameters and heat of transformations. Barman and Olsonsi also 

discussed DTA kinetics_ 
A different approach of DTA peak evaluation is based on utilization of the 

initial part of the reaction progress where the change in the sample properties is small. 
One of the most popular methods is that of Piloyan et al.’ ‘- ’ 65 where the combination 
of Borchardt’s approximation * 35 and the genera1 form of the differential rate equa- 
tion is used, 

g log AT = [log (ZA)t Iog f(a)] - 

z EOal5*;lrlC 

(4.100) 

The entire procedure is illustrated graphically in Fig_ 4.21. 

Fig_ 42I_ Method by Piioyan”** 33_ 
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Fig. 4.22. Graphical representation of manual evaluation of DT<4’&. Curve (4) for the decomposition 
of freshly powdered KMnO& (compare Fig. 4.8 and 4.13). (B) IntegraI method using the plot of 
log g(z) vs. (I/T) assuming different t-rue controlling processes. (C) Differential method assuming 
validity of ATEdz:d*. Compare with the following table obtained by Ieast squares computer 
evaiuation using Skvira’s program x9x for the required accuracy of 10 percent in the calculated 
linearity region. 

Case-model 

[I -_(I -2)1’3] 
[I -(I -zj“3]2 
1 -]z-_(I -@‘a 
(I -a) In (1 -z))tz 
[-In (l-z)]rfz 

1-m (1 -a 
[I -(l -z)i’Z] 

Inrerrai of lineariiy 
(in 51) 

94% (0.01-0.95) 
94% (0_0:-0.95) 
80% (0.03-0.83) 
SO% (0.03-O.S3) 
59% (0.01-0.59) 
59% (O.Ol-Q.59) 
57% (0.03~59) 

E 
(in Kcal) 

i! 

53.8 5.6 x 10zo 0.015 
109.6 1.3 x 104s 0.015 
97.9 6.9 x lO3g 0.035 
95.6 2.6 x 1O39 0.074 
29.2 1.3 x IO’O 0.081 
60.2 1.4 x 102’ 0.08 1 
48.4 2.7 x Ior* 0.044 

Standard 
deciarion 
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In the case that f(z) is smaII with regard to E/RT and is a well-behaved func- 
tion ’ 33 (temperature effect on the term EjRT is pester than that induced in f(r) under 
a suitabIy chosen heating rate) then the modified Arrhenius plot of log AT vs. I]r is 
linear with a slope of E/2.3 R_ It can be directly derived from the advancing edge of the 

DTA peak in the region of about 0.1 czcO.4. The agreement between the results 
produced in this way and those obtained from more conventional methods was 

reported tc be excehent 3’-15J-156. 
Girgisr6’ has subjected Piloyan’s method and others to severecriticism because of 

deviations found in the caIcuIated kinetic parameters exceeding &-ten percent (he 

also made a comparison with isothermal DTA methods)_ It can be shown63 that the 
reliability of PiIoyan’s method depends on the kind of model relation employed. The 
function, (I -z)~~ is the Ieast suitabie while the functions describing nuc!eation, crystal 
growth and/or diffusion give quite satisfactory results. The best example supporting 
the validity of Piloyan’s method is the work of Rasmunsen ’ 66 who recently reported 
the theory of DTA based investigations of diffusiona growth of particles. He rn; de an 

analysis ’ 66 of pseudo-exothermai base line drift associated with the agglomeration 
process of NiO fine particles dispersed in a Ni metal matrix Following the Kissinger 

approach”- I Jo, the direct proportionality, C,, between the changes in both the DTA 

curve, dA7, and the thermai resistance, da, can be established. Assuming the product 
of thelmaI resistance. R, and the average cross section of particles, 1 -v’:~zv’, to be 

constant for a fixed number of equal sized spheres, it can be derived that 

dR = Ro$‘3d(r’) (4.101) 

where ~7 is the number of voids per volume unit and R, is a constant. Considering 
further growth of particles as controlled by voIume diffusion (paraboIic law 

r = C,,!z where r is the radius and D is the diffusion coefficient) the term, d(r’), 

can be equated to Ci d(Dr) yieIding 

dR = R0rlzL3C; d(Dt) = Cloz d(Dt) (4.102) 

together with the equation, dAT= CRdR, and after integration 

AT= Cio3 (Dt- Dot,) (4.103) 

In order to eIiminate the constant Cio3, the Iogarithmic form of eqn. (4.103) for two 
different time-Iimits is taken and simpIified by iterations utilizing D = D,exp(- E/RI) 

so that 

(4_ 104) 

This is identical with the Piloyan eqn. (4_100). The activation ener_gy so caIcuIated’66, 

37 kcal/moI, corresponds to the activation energy for the diffusion of oxygen in nickei 
meta (Iiterature vaiue of 39.5 kcaI/moI). 

.4 typical example of DTA eva!uation is giver, in Fig. 4.22 in comparison with 

the previously described methodss4. 

The use of DSC substantiaily simpIifies the kinetic data evaIuation because the 
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DSC curve is a direct record of the rate of heat evolutiont dq;dr, which is directly 
proportional to the reaction rate (see section 324) The major contribution to DSC 

kinetics methods has been made by Rogers apd his co;vorkers’43-’ 5’-168_ The sim- 
plest method utilizes the equation I ” 

E= __2_3RAs 
NW’-) 

(4.105) 

where d is the deflection (analogous to 47) from the baseline at the associated absolute 
temperature, T. For simple decompositions which follow the reaction-order concept, 
E can be determined from the curve peak maximum using a predetermined value of n 
(ref. 143). 

(4.106) 

where C, 0b is the proportionality constant including the heat of reaction, 4H. Rogers 

and Smith ’ 68 extended this method to evaluate 2 as 

z = E~J exp (E:RT,,,) 
RT& - 

(1.107) 

There are other DSC based kinetic investigations“‘-“‘. 

An accumulation of recorder charts is the characteristic result of present TA 

experiments_ Owing to the practice of manual data logging the choice of a suitable 
chart is somewhat arbitrary. However, two alternative types of input data are possible, 
7: =x(T) and/or ci =&(T). Such data, scanned, and then assembled for calcu!arion 

sometimes require a numerical method for obtaining a reliable derivative cun;e. The 
uncertainties inherent in such methods of data collecting w-ill be reflected in the final 
results_ A more reliable and time-saving approach is to use a digital voltmeter com- 
bined with a direct data logging system. The commutator seIects the impulses in a 
suitable order and transmits them to the voltmeter, which converts the analog voltage 
into digital form. The on-line coupled coder then transmits the information together 
with a time base to the digital computer system. Another way may be the direct com- 
bination of TA output with an analogous computer system. -The principle of on-Iire 
systems is shown in the flow chart in Table 4.3. 

In general, ’ 76- ’ ‘* for an electronic analog computer the physical \-ariables are 
time and voltage, correspondin g mathematically to an independent variabJe and 
dependent variable, respectively- The value of the physical variable is taken to be 
proportional to the mathematical variable of the equations that the computers present. 

Programming requires only the coupling of the appropriate operations by wires to 
form the equation desired and the solution may than be displayed visually on an 

oscilloscope. However, this method presents many problems which are diflicuh to 

solve, such as those encountered in partial differential equations or matrix calcuJus. 
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TABLE 4.3 

FLOW CHART FOR ON-LIiriE EVALUATION OF EXPERIMEKI-AL DATA 

Dicid 
Compu:cr 

3lcmory 

t 

The advantage of this method is found particularly in the study of chemical reactions 
by stopped flow or relaxation procedures where a large quantity of data is collected 

in a short period of time’ “. 
The principIe of digital computer operation is simply that of fulfy automated 

counting on an abacus usin g a set of basic eiements each of them representing the 
number zero in the closed and the number one in the open state. Thus the input data 
must be combined with a suitable program to control the caiculation of desired 
information. The advantage of this method is the ability to caiculate stored data in 
any time and with an advanced program to direct the calculation to match the desired 

accuracy_ 
Hesitation to calculate kinetic parameters from non-isothermal measurements 

probably originated in the rather complicated mathematical operations necessary for 
extracting tie desired information_ The main contribution of machine computation 
to heterogeneous reaction kinetics may be cIassif,zd as follows: 

(I) Automated monitoring of experimental data, 
(2) Predicting the experimentaf course from known kinetic parameters, 
(3) Kinetic appraisal of the experimental curves. 

The first task does not n ecessarily require fully automated computers as the primary 
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purpose is to establish a suitable record of experimental data such as z = z(T) 
and!or 5 =g(7), and the accurate calculation of peak areas, derivatives, e-c. In such 
cases. a desk-computer containing some logic operations, conditional instructions and 
sufficient memory will save time in comparison with normal graphical methods’87-‘“g. 
-411 of the necessary corrections for experimental data normalization (e-g_, thermo- 

couple voltage-temperature rlependance)‘s~-‘g2*‘g3, can be made also. The second 
point finds use in engineering problems such as reactor design and the control of 
experimental conditions by comparing the actual reaction course with that predicted 

theoretically from optimum kinetic data; it may also serve as a check of the quality 
of the calculated data. The last point presents the task cf the actual caIcuIation of the 
kinetics and the mechanisms of processes and is based on the mathematical methods 
reviewed in section 4.2. The analysis may be accomplished either directly, yielding the 
individual parameters, E, Z and f(r) (preferably by means of digital computers), or 
relatively, by comparing the experimental cume with a set of curves of a known 
description (by means of an analog computer)_ 

Examples of the latter are: Maclean and Tranter”‘, who used a two-stage 
iogarithmic amplifier; Wilburn et al. * 3 ‘- la7 employed a system to simulate the equa- 
tion for the center temperature in an infinite cylinder; James and Pardue’ 7i used an 
analog system for linear and non-linear response curves; Gayle and Eggerri3 for 

heating rate curves programming; and Hughes and Hart’ is used the follovving patch 
diagram tc integrate the equation, 3 = 4 exp (-E/R53 (EJR12j 

initial 
I- conditions Ir,) 

using the generated, y = exp (- E,/RT) and f(y). The output, df(r),‘dr, gives upon 
integration the function f(z)_ 

Probably the first to use a digital computer in non-isothermal kinetics was 
Andersongo who solved three simultaneous equations of the general form to yield E 
and Z for three multiple runs with different +_ MC Crackin I 77 used a series ofweights, 
zej, and temperatures, r’, to feed the computer for ‘he evaluation of (I -21,. and g (z)~ 

for each point,j, assuming the validity of reaction order, n, i.e., g(z)j T= (Z/a) (@R) 
r_ , (E/RT) where r- I is the incomplete gamma function of minus first order. ASJU- 
ming the error in zLi to be only experimental and independent of its v.alue, g(z)j wil. 
have a constant variance so that the best estimate for Z/r$ is given by 
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The procedure is carried out far various va!ues of n and E. The va!ues that give the 
smallest standard error are then chosen. Beech”’ used the equation, In (drrjdt) = 
In Ztn In (I --z)--E!RT. with a FORTRAN II computer program. A relative error 
least-squares procedure was used with a regression method to soIve kinetic parameters 
assuming that the proportionality between dx/dt and dAH/dr isequa! to .ti&‘(AHo.+,C), 
where lf is the mo!ecu!ar weight, d the pen reflection, < the sensitivity, AH the heat of 
reaction, m. the in-weight of the sample and C the width of the chart. respectively. 
The term, z, is the ordinary fractiona conversion established from the ratio of the 

partial to the total peak area which is convenient in DSC measurements. Gwinup’ 79 
wrote a FORTRAN IV program to emp!oy data from either a DTA or DSC peak. 
The DTA calculation is accompIished by Borchardt and Daniel’s method. In DSC 
methods the function, f(r) = P(I -cc)“* is used to caIcu!ate the specific rate constant, 
k. according to (dAHjdr) = iAjAa)-” x (I - A/As)-". 

The met!lod of Schempf et a!. Is1 is written in FORTRIAN II and is applicable 
on& to first order kinetics. The method utilizes a Ieast squares po!ynomiaI fit of a TG 
curve with a j-th order poiynomia! (z = A, +A, _u-!-A,x’f ___ -I-A~_x?), where j is 
about 13 and Ai are constants received from the Ieast square fit of sample weight-time 
data necessary for obtaining the correct derivative curves. The rate constant, kl is 
established for each temperature and the correspondin g kinetic parameters, E and 2. 
are then evaluated- 

The aigorithmization method of Sestik et a!_ls3 proposed the use of numerical 

derivation to obtain a derivative of an observed TG curve, 

(zcp,-u;pJ 

0 [ 

(z+3-4X~j+-,-?-5u;-+, -5rr;-, f41+2-u~i_3) 

dr 2 
-... -f- . . . 

60 

zi= KXU 0 I 

where Q is the constant time interva! of scanning and W and I+‘,, are the instan- 
taneous and fina! weight losses, respectively. Using a least squares method. the parallel 
eva!uztion of the kinetic parameters, E and N, is made by means of the simple differ- 

ence-differential method. The constant 2 is calculated from the original curve. Ihe 
program is written in ALGOL and errors in the data evaluation are computed at 
various stages to indicate the Ieve! of accuracy attained. Because of the experimental 
uncertainty and necessity of a precise re-reading of the weight loss data inherent in a!! 
derivative methods, this algorithmization was improved * 8G by smoothing the numeri- 
cal derivative obtained by Gaussian curve fit. _4n iterative least-squares refinement of 
linear coefficients was appiied to exclude points which lie outside the permitted level. 
-4 test of order, n, obtained by a derivative procedure is then made through the integral 
method of Coats and Redfern lo8 checking the neighboring values of E unti1 the Ieast 
relative error in the straight !i.ne is achieved_ A test of the ca!cu!ated parameters by 
re-evaIuation of the weight loss curve is a!so possibie. To extend the applicabiiity of 
this program, an improveti method was proposed based on matrix evaluation of the 
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TABLE 4.4 

FLOW CHART FOR KINETIC ANALYSIS I 

L 

Procedures: DERIVATIVE for numerical derivation 
SOLUTION of three nonhomogeneous linear cquations 
EXPOWE33TAL-INTEGRAL for p(x)-function 

i 

Input data: Phi-sical property measured. X 
Interval of equidistant scanning I 

Derivatke if available I 
Initial temperature and heating rate or instantaneous time-temperature 
data 

/ 

i 
i 

Polynomial tit of x’= S(T) LO smooth experimental data 
points 

t * 
Determination of mean temperature increase and I 
instantaneous rates 

Correlation of cakulated and clec:ronicaIiy generated 
derivatives, if any 

I_; : 

Calculation of z, 5, (I -I) and --In (I -I) 

window to exclude non- 
suitable data points. possi- 
bility of dividing the cspcri- 
mental cume to multiple 
parts of linear behavior with 
regard IO the data treatment 

Iterationswith the decreasing i i Logarithmization and differentiation 

I f 

! 

i- 1 

I I Calculation of E through the combination of t\vo cx- i 

I 

ponentiai factors II. m or n. p for sets of I 

rrA iog (1 -I) f mA Iog z and ‘or 
rrAlog(I -z)+pAlog(-h(l-x)) 

- I 

1 
i 

-! 
Test of accuracy by back calculation 1 I ! i 

L Calculation of 2 using EXPOXENTIXS-IPI;-T. 
--I 

1 

t 

I 

Print out: E. Z and best comclnation of exponcndal-factors 12, m cad n, 2 
including their errors 
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cgxreral, but formal kinetic equation, d_r:‘dr = kzm(I -I)“[-in (I -x)jp. using its 
difference-Iogarithmic form as shown in the flowchart in TsbIe 4.4. 

Recently NoIan and Lemay”’ studied a systematic variation of the three 
parameters m, n and p and found eqn. (-5.32) useful for a prehminary appraisai of 
reaction mechanism or as a means for checking isothermal results. The program is 
written in FORTRAN IV and performs the DSC peak area integration by Simpson’s 
rule and the linear Ieast-squares anai_vsis of the Arrhenius plot including a t-test to 
indicate the degree of linearity. The possible rate equation is limited by considering 
those cases vihich have a reiatively small range of m, n or p and/or which yield a 
Iimited range of activation energies as the range of z is varied. 

Satava and Skv&a6r used ALGOL 60 Ianguagz and Borchardt and Daniel’s 
method to facilitate calculations of the fraction decomposed and kinetic parameters 
from a DTA peak. The improved program of Sk-&a *9 * is similar to the procedure 
used in the conventional estimation of reaction mechanism from isothermal measure- 
ments, as was recently demonstrated by Johnson and GalIagher’“6. The latter method 

TABLE J-5 

FLOW CH.4RT FOR KIXETIC ANALYSIS II 

Procedures: SIMPSOS for peak integration 
LEAST-SQUARE to determine iinearity 
ENERGY to evaiuate E using p(s) 
ZET to evaluate 2 using p(x) 

I Input data: DTCA curve detkction in the equidistant points. initia1 and final 
temperature. heating rate, print control 

I 

Evaluation of fractional conversion. 

Evaluation of functions g(z) and - Iog g(z) 

Appraisal of the pIot --log g(x) vs. 1,V 

Ordering of the functions --log g(z) according to the region of 
the linearity 

z 
I. 

I Evaluation of kinetic parameters E and Z by Icvt squares 
method 

I 

i 

Print out: E. Z and Iinearity regiors with their errors for individual mechanisms 



is written in FORTRAN IV and based on !&WI’s methoda for the estimation of 
model relation from the Iinear fit of fog (g(z)) vs_ 1,X A least-squares method is used 
throughout the treatment which is based on comparing different reaction mechanisms 
to achieve the greatest region of Linearity. Kinetic parameters zre evahrated by the 
numerical solution of the series for the p(.r)-function usin g iterative successions, as 

shown in the flow chart of Table 4.5. A universal program combining flow charts in 
Tables 4.4 and 4.5 is in preparation’s5. 

Vachu3ka and Vobofif r I9 described a program in ALGOL to evalua?e kinetic 

parameters from the derivative form of the logxithm of the rate equation to enab!e the 
sohttion for a non-Iincar temperature rise during the heating of a sample. The ec:... ‘on 

TABLE 4.6 

FLOW CHART FOR KINETIC ANALYSIS III 

I 

Procedures: DERIVATIVE 1st ORDER. ;_ i- 
DERIVAT!VE 2nd ORDER. ii, i; 
DERIVATIVE 3rd ORDER, -i- 

Input data: Instantaneous Temperature, T, 
Time, I and 
Weight, IT 

Evaluation of fractionai conversion. 
I 

where X and Y are functions of zr, &, z, 
1 

method using procedures 

Errors in .m and n 
I 

Correction of IU and n by reintroducing to the origin;; equation 
& = Ze.xp (--EIRT)p(I -zr 

Solution of the original equation with regard to the constants E and 
Z by least squares method 

Calculation of a correlation coefficient 

I 
I 

Print out: E. Z, m and n and their errors 
I 
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of a straight !ine is soIved with regard to E and II using input data of instantaneous 

values of weight. II-, temperature, T. and time, c. The temperature rise and the first- 
and second-order derivatives, are computed numerically. This prosram is now being 

improved Iyo to utiIise a polynomial fit throughout the experimental points. It is 
possible to make a direct soiuiion of derivatives, even of the third order, required to 
ester;d the caIcuIation in order to obtain the values of the two exponential factors, m 
and n isee TabIe 4.6): See also the xork of Zsekely’ Is_ 

There are. of course, many more applications of computer tLyhniques’@’ to 
non-isothermal kinetics such as poIymers’6g-x “-I 6’-1yo, near-equitibrium esperi- 
mentat conditions”‘. heat transfer effects’9G, caIorimetry’78-‘99; and their number 
increases continuousIF_ The computer technique has been 3 wr_Icome too1 to faciIitate 
experimental data processing 18s-1s9_ It should be kept in mind that for adlxnced 
ph_vsical investigations. only 3 \-my sophisticated pro,omm may @ve 3 reliable result. 
The hish sensitivity to random errors and Iead-in misinformation is troublesome and 
may often be misleading particularly xi-hen re!atin, w the final considerations to the 
numerica print out. Hence, the manual evaluation still is of g<z:lt use because the 
mistakes introduced or generated can be continuously corrected b_v ingical con- 
siderations. 

These equations predict straight lines when fog i-In (1 - ;I j) is plotted against 
In 7: Tand IjT. respectiveI>-, and E is computed as (3.567 RT, tg /l), (4.567 RT' ts /Ii> 

and (4.567 tg /3--ZRT). respectively. The precision of these approximations has 
recentIy been iIIustrated by Broido and Williams (T.zernroc/zizn. ACILI. 6 ( 1973) 245) 
x-ho found that 3 higher degee of linearity is given by eqn. (A-731, i.e. the last of 
above-mentioned plots is about twice as ,oood as the plot to the second approsimation 
than the first (justified on the basis of an asymptotic expansion with a non-dimensional 
sctivation energy as the Iarge parameter)_ it also explains the deviations obtained in 
the E vaIues when using different methods of kinetic data calculation (see refs. 5 I. 66, 

113). 
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